Accurate ripening stage classification of pineapple based on visible and near-infrared hyperspectral imaging system

成熟度 高光谱成像 人工智能 模式识别(心理学) 成熟 支持向量机 计算机科学 预处理器 数学 遥感 食品科学 地理 化学
作者
Hongjuan Chang,Qinghua Meng,Zhefeng Wu,Tang Liu,Zouquan Qiu,Chunyu Ni,Jiahui Chu,Juncheng Fang,Yuqing Huang,Yu Li
出处
期刊:Journal of AOAC International [Oxford University Press]
标识
DOI:10.1093/jaoacint/qsaf010
摘要

Abstract Background Pineapples are a popular tropical fruit with economic value, and determining the optimum ripeness of pineapples to assess their quality is crucial for harvesting, marketing, production and processing. Objective In this study, spectral information and soluble solid content (SSC) of pineapple ripening stages (unripe, ripe and overripe) were analyzed by 400–1000 nm hyperspectral imaging in order to determine the best classification model of pineapple ripening. Method Four different preprocessing methods, i.e., standard normal variate (SNV), multiplicative scatter correction (MSC), normalization, and Savitzky-Golay (SG) smoothing, in combination with successive projection algorithms (SPA) and bootstrapping soft shrinkage (BOSS) for feature wavelength extraction, were used to compare the full-wavelength and the two types of feature extraction support vector machine (SVM), extreme learning machine (ELM), K-nearest neighbor (KNN), and random forest (RF), four supervised machine learning classifiers for maturity classification. Results For pineapple ripeness classification, SNV preprocessing RF showed the best results with 94.44% accuracy at both full wavelength and 28 wavelengths selected in SPA. A total of 33 wavelengths selected from BOSS achieved a test accuracy of 97.22% by RF. Conclusions These results demonstrate the potential of NIR-HSI as a non-destructive, fast and correct tool for pineapple ripeness identification. The method can be applied to classify and grade marketed pineapple fruits to address pineapple quality issues related to uneven ripeness. Highlights The visible and near-infrared hyperspectral imaging (VIS-NIR-HSI) system combining machine learning and wavelength selection successfully classified pineapple ripening stages, an approach that could improve the ability to classify pineapples at the ripening stage in large packaging companies. In addition, finding key wavelengths or features that can be classified corresponding to pineapple ripening stages has the advantage of developing a low-cost, fast, and effective multispectral imaging system compared to the NIR-HSI system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
FashionBoy应助wlnhyF采纳,获得10
3秒前
斯文败类应助6633采纳,获得10
5秒前
那种完成签到,获得积分10
5秒前
pysa完成签到,获得积分10
5秒前
6秒前
Xin完成签到,获得积分20
6秒前
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
9秒前
楠楠完成签到,获得积分10
13秒前
背书强发布了新的文献求助10
14秒前
14秒前
16秒前
朱妮妮完成签到,获得积分10
16秒前
雨渺清空完成签到 ,获得积分10
16秒前
17秒前
17秒前
terence完成签到,获得积分0
18秒前
20秒前
21秒前
21秒前
小宋同学不能怂完成签到 ,获得积分10
22秒前
靓丽紫真发布了新的文献求助10
22秒前
wlnhyF发布了新的文献求助10
22秒前
卡琳完成签到 ,获得积分10
23秒前
24秒前
25秒前
26秒前
26秒前
26秒前
6633发布了新的文献求助10
29秒前
777发布了新的文献求助10
32秒前
34秒前
xu完成签到 ,获得积分10
35秒前
36秒前
kenny完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967