A steel surface defect detection method based on improved RetinaNet

计算机科学 曲面(拓扑) 结构工程 数学 几何学 工程类
作者
Zhen Yang,Yu Liu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-88527-x
摘要

To address the issue of low detection accuracy caused by the variety of steel surface defect types, large shape differences, and the similarity between defects and the background, this paper proposes an improved method for detecting steel surface defects based on RetinaNet. Firstly, deformable convolutions are integrated into the ResNet backbone for feature extraction, allowing the convolutional kernels to adaptively adjust their shapes when confronted with defects of varying shapes, thereby capturing defect regions more accurately. Secondly, a CA-BiFPN is proposed for feature fusion, which effectively integrates information from different feature layers using attention mechanisms and enhances the focus on defect features from the complete feature space with a CA attention module. Thirdly, an IA-BCELoss is introduced as the classification loss function, coupling classification and regression predictions to ensure high-quality detection boxes while maintaining classification accuracy. Finally, comparative experiments are conducted on the NEU-DET steel surface defect detection dataset. Results demonstrate that the proposed method achieves the highest accuracy, with a 6% improvement over the original model, achieving an mAP of 81.5%. Compared to YOLOv7-X and YOLOX-L, mAP increases by 5.2% and 5.3%, respectively, while the number of parameters is reduced by 37.96 M and 21.23 M. These findings indicate that the proposed method exhibits superior performance in steel surface defect detection tasks and holds significant practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长岁完成签到 ,获得积分10
1秒前
1秒前
疯癫君发布了新的文献求助10
1秒前
4秒前
4秒前
鞋子发布了新的文献求助10
4秒前
汉堡包应助大力猫崽采纳,获得10
5秒前
6秒前
6秒前
7秒前
文艺书雪完成签到 ,获得积分10
8秒前
辣辣发布了新的文献求助10
8秒前
CipherSage应助活力晓夏采纳,获得10
8秒前
long完成签到,获得积分10
8秒前
Siqi发布了新的文献求助10
9秒前
布丁完成签到 ,获得积分10
11秒前
FashionBoy应助Jasen采纳,获得30
11秒前
long发布了新的文献求助10
11秒前
liangyuting发布了新的文献求助10
12秒前
reflux应助aco采纳,获得10
13秒前
一五完成签到,获得积分10
13秒前
15秒前
斯文败类应助abocide采纳,获得10
16秒前
16秒前
18秒前
19秒前
华仔应助淡定的寒安采纳,获得10
21秒前
大阿申发布了新的文献求助30
21秒前
活力晓夏发布了新的文献求助10
21秒前
22秒前
achuan完成签到,获得积分20
23秒前
weber完成签到,获得积分10
23秒前
24秒前
科研小民工应助lambda采纳,获得200
24秒前
梓沐发布了新的文献求助10
24秒前
yu完成签到,获得积分10
26秒前
26秒前
俭朴的采波完成签到 ,获得积分10
27秒前
CodeCraft应助字很丑采纳,获得10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928