Towards contrast-agnostic soft segmentation of the spinal cord

分割 人工智能 对比度(视觉) 计算机科学 计算机视觉 模式识别(心理学) 解剖 医学
作者
Sandrine Bédard,Enamundram Naga Karthik,Charidimos Tsagkas,Emanuele Pravatà,Cristina Granziera,Andrew C. Smith,Kenneth A. Weber,Julien Cohen‐Adad
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:101: 103473-103473 被引量:11
标识
DOI:10.1016/j.media.2025.103473
摘要

Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord that are stable across MRI contrasts. Using the Spine Generic Public Database of healthy participants (n=267; contrasts=6), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with aggressive data augmentation and a regression-based loss function, were then used to train a U-Net model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different GT mask types, loss functions, contrast-specific models and domain generalization methods. Our results show that using the soft average segmentations along with a regression loss function reduces CSA variability (p<0.05, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art contrast-specific methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects. Our model is integrated into the Spinal Cord Toolbox (v6.2 and higher).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助cindy采纳,获得10
1秒前
好运6连发布了新的文献求助10
1秒前
2秒前
yy完成签到,获得积分10
2秒前
魏芷容完成签到,获得积分10
2秒前
徐徐图之完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
夏简柒完成签到,获得积分10
4秒前
AAA电池批发顾总完成签到,获得积分10
4秒前
4秒前
晚梦尚歌发布了新的文献求助10
5秒前
棱镜发布了新的文献求助10
5秒前
dzdlznb发布了新的文献求助10
6秒前
科研通AI6应助伍六柒采纳,获得10
6秒前
111完成签到,获得积分20
7秒前
7秒前
纯真玉兰发布了新的文献求助10
8秒前
8秒前
8秒前
楠木木完成签到 ,获得积分10
8秒前
hhhhh完成签到 ,获得积分10
9秒前
阡陌发布了新的文献求助10
9秒前
瘦瘦麦片发布了新的文献求助10
10秒前
lv完成签到,获得积分10
11秒前
12秒前
13秒前
奋斗VS发布了新的文献求助10
13秒前
共享精神应助winwing采纳,获得10
14秒前
吴彦祖完成签到,获得积分10
16秒前
17秒前
zhangyu完成签到,获得积分10
17秒前
今后应助月星采纳,获得100
17秒前
18秒前
18秒前
结实半邪完成签到 ,获得积分10
18秒前
18秒前
wen发布了新的文献求助30
19秒前
淡定的蜜蜂完成签到 ,获得积分10
20秒前
天真的千雁完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795