Towards contrast-agnostic soft segmentation of the spinal cord

分割 人工智能 对比度(视觉) 计算机科学 计算机视觉 模式识别(心理学) 解剖 医学
作者
Sandrine Bédard,Enamundram Naga Karthik,Charidimos Tsagkas,Emanuele Pravatà,Cristina Granziera,Andrew C. Smith,Kenneth A. Weber,Julien Cohen‐Adad
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:101: 103473-103473
标识
DOI:10.1016/j.media.2025.103473
摘要

Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord that are stable across MRI contrasts. Using the Spine Generic Public Database of healthy participants (n=267; contrasts=6), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with aggressive data augmentation and a regression-based loss function, were then used to train a U-Net model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different GT mask types, loss functions, contrast-specific models and domain generalization methods. Our results show that using the soft average segmentations along with a regression loss function reduces CSA variability (p<0.05, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art contrast-specific methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects. Our model is integrated into the Spinal Cord Toolbox (v6.2 and higher).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悄悄发布了新的文献求助10
1秒前
1秒前
尼古拉耶维奇完成签到,获得积分10
1秒前
我我我完成签到,获得积分10
1秒前
1秒前
Ava应助欣喜的成败采纳,获得10
2秒前
开朗寇发布了新的文献求助10
2秒前
灵巧的书文应助Asimov采纳,获得10
2秒前
tytyty发布了新的文献求助10
2秒前
左辄发布了新的文献求助10
3秒前
3秒前
wnz发布了新的文献求助10
3秒前
脑洞疼应助coldstork采纳,获得10
3秒前
欣喜谷槐完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
小栗发布了新的文献求助10
4秒前
wuyisha完成签到,获得积分10
4秒前
乐乐应助wr采纳,获得10
4秒前
努力发论文完成签到 ,获得积分10
5秒前
大个应助王玉河采纳,获得10
5秒前
失眠乐双完成签到,获得积分10
5秒前
yiren发布了新的文献求助10
6秒前
6秒前
明ming到此一游完成签到 ,获得积分10
7秒前
标致的语山完成签到,获得积分10
8秒前
8秒前
wuyisha发布了新的文献求助10
8秒前
8秒前
Rui发布了新的文献求助10
9秒前
10秒前
10秒前
yym发布了新的文献求助30
10秒前
Lucas应助怎么会这样呢采纳,获得10
11秒前
12秒前
小栗完成签到,获得积分10
12秒前
Aikesi完成签到,获得积分10
12秒前
12秒前
lilly完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993