Machine learning-driven in-hospital mortality prediction in HIV/AIDS patients with Cytomegalovirus infection: a single-centred retrospective study

医学 内科学 人口 肺炎 机会性感染 免疫学 重症监护医学 人类免疫缺陷病毒(HIV) 病毒性疾病 环境卫生
作者
Shiyi Lai,Wudi Wei,Shixiong Yang,Yuting Wu,Minjuan Shi,Sirun Meng,Xing Tao,Shanshan Chen,Rongfeng Chen,Jinming Su,Zongxiang Yuan,Li Ye,Hao Liang,Zhiman Xie,Junjun Jiang
出处
期刊:Journal of Medical Microbiology [Microbiology Society]
卷期号:73 (11)
标识
DOI:10.1099/jmm.0.001935
摘要

Introduction. Cytomegalovirus ( CMV ) is a widely disseminated betaherpesvirus that typically induces latant infections. In immunocompromised populations, especially transplant and HIV-infected patients, CMV infection increases in-hospital mortality. Gap statement. Although machine learning models have been widely used in clinical diagnosis and prognosis prediction, reports on machine learning model predictions for the in-hospital mortality of HIV/AIDS patients with CMV infection have not been reported. Aim. Analyze the general gemographic and clinical characteristics of HIV/AIDS patients with CMV infection and identify the factors affecting the prognosis of this population, which will help to reduce their in-hospital mortality. Methods. Hospitalized HIV/AIDS patients with CMV infection were recruited from the Fourth People’s Hospital of Nanning, Guangxi, from 2012 to 2019. After dividing them into survival and death groups based on their in-hospital survival status, their general and clinical profiles were described. Following 1 : 3 propensity score matching to equalize baseline characteristics, three machine-learning models (Random Forest, Support Vector Machine and eXtreme Gradient Boosting) were deployed to forecast factors influencing prognosis. The SHapley Additive exPlanations tool explained the models. Results. A total of 1102 HIV/AIDS patients with CMV infection were analysed. There was no statistical difference in the general condition of the study subjects ( P >0.05). Prevalent complications/coinfections included pneumonia (63.6%), tuberculosis (47.2%) and oral fungal infections (44.6%). There were significant differences between the groups in pneumonia, cryptococcosis and hypoproteinaemia ( P <0.05). The differences in laboratory indicators between patients were also statistically significant ( P <0.05). The three machine learning models demonstrated good performance, identifying primary predictors of mortality. Pneumonia, urea, indirect bilirubin and platelet distribution width exhibited positive associations with death, with higher levels correlating with an increased mortality risk. Conversely, CD4 T-cell count, CD8 T-cell count and platelet displayed negative correlations with mortality. Conclusions. HIV/AIDS patients with CMV infection exhibit distinctive clinical features impacting survival outcomes. Machine learning models accurately identify key influencing factors and predict mortality risk in this population, which appears to be essential to reducing in-hospital mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gin完成签到,获得积分10
刚刚
susong987完成签到,获得积分10
1秒前
慧喆完成签到 ,获得积分10
2秒前
Lis完成签到,获得积分10
3秒前
李健应助王阿婷采纳,获得10
4秒前
aaa完成签到,获得积分20
5秒前
5秒前
人生何处不青山完成签到 ,获得积分10
5秒前
谨慎青亦完成签到 ,获得积分10
7秒前
8秒前
科研通AI2S应助abc1122采纳,获得10
8秒前
8秒前
8秒前
1111发布了新的文献求助10
9秒前
sch完成签到,获得积分10
10秒前
fzd完成签到,获得积分10
11秒前
11秒前
土豪的摩托完成签到 ,获得积分10
11秒前
无奈傲菡完成签到,获得积分10
12秒前
胡图图完成签到,获得积分10
12秒前
selfcuijing发布了新的文献求助10
12秒前
zhaofw完成签到,获得积分10
12秒前
前程似锦完成签到 ,获得积分10
13秒前
anti1988完成签到,获得积分10
13秒前
13秒前
单薄惜文发布了新的文献求助10
14秒前
张津浩完成签到,获得积分10
14秒前
Wayi完成签到,获得积分10
15秒前
kelien1205完成签到,获得积分10
15秒前
热情笑旋完成签到,获得积分10
16秒前
Akim应助阿莹采纳,获得10
16秒前
啦啦啦发布了新的文献求助10
17秒前
读研好难发布了新的文献求助10
19秒前
Zhai完成签到 ,获得积分10
19秒前
19秒前
郑伟李完成签到,获得积分10
21秒前
商丘莺发布了新的文献求助10
21秒前
杰瑞院士完成签到,获得积分10
21秒前
dracovu完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311586
求助须知:如何正确求助?哪些是违规求助? 2944410
关于积分的说明 8518837
捐赠科研通 2619769
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664704
邀请新用户注册赠送积分活动 649969