亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization

脚印 DNA足迹 化学 氢-氘交换 生物物理学 蛋白质结构 质谱法 生物化学 DNA结合蛋白 DNA 生物 转录因子 色谱法 基序列 基因
作者
Ming Cheng,Michael L. Gross
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00545
摘要

ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation. Building on firsthand experience in developing and applying protein footprinting, we provide an account of our progress in method development and applications.In the development section, we describe fast footprinting with reactive reagents (free radicals, carbenes, carbocations) with emphasis on fast photochemical oxidation of proteins (FPOP). The rates of the modifying reactions are usually faster than protein folding/unfolding, ensuring that the chemistry captures the change without biasing the structural information. We then describe slow, specific side-chain labeling or slow footprinting and hydrogen–deuterium exchange (HDX) to provide context for fast footprinting and to show that, with validation, these modifications can deliver valid structural information. One advantage of slow footprinting is that usually no special apparatus (e.g., laser, synchrotron) is needed. We acknowledge that no single footprint is sufficient, and complementary approaches are needed for structure comparisons.In the second part, we cover several of our footprinting applications for the study of biotherapeutics, metal-bound proteins, aggregating (amyloid) proteins, and integral membrane proteins (IMPs). Solving structural problems in these four areas is often challenging for other high-resolution approaches, motivating the development of protein footprinting as a complementary approach. For example, obtaining structural data for the bound and unbound forms of a protein requires that both forms are amenable for 3D structure determination. For problems of this type, information on changes in structure often provides an answer. For amyloid proteins, structures of the starting state (monomer) and the final fibril state are obtainable by standard methods, but the important structures causing disease appear to be those of soluble oligomers that are beyond high-resolution approaches because the mix of structures is polydisperse in number and size. Moreover, the relevant structures are those that occur in cell or in vivo, not in vitro, ruling out many current methods that are not up to the demands of working in complex milieu. IMPs are another appropriate target because they are unstable in water (in the absence of membranes, detergents) and may not retain their HOS during the long signal averaging needed for standard tools. Furthermore, the structural changes occurring in membrane transport or induced by drug binding or other interactions, for example, resist high resolution determination.We provide here an account on MS-based footprinting, broadly describing its multifaceted development, applications, and challenges based on our first-hand experience in fast and slow footprinting and in HDX. The Account is intended for investigators contemplating the use of these tools. We hope to catalyze refinements in methods and applications through collaborative, cross-disciplinary research that involves organic and analytical chemists, material scientists, and structural biologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助维斯佩尔采纳,获得20
10秒前
维斯佩尔完成签到,获得积分10
14秒前
17秒前
24秒前
维斯佩尔发布了新的文献求助20
31秒前
小蘑菇应助烂漫灯泡采纳,获得10
34秒前
37秒前
李健的小迷弟应助橙子采纳,获得10
38秒前
鳗鱼厉发布了新的文献求助30
42秒前
科研小白完成签到,获得积分10
46秒前
51秒前
烂漫灯泡发布了新的文献求助10
55秒前
李某完成签到 ,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
Leon应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
怕黑的思雁完成签到 ,获得积分10
1分钟前
1分钟前
Maximoff完成签到,获得积分10
1分钟前
没有蛀牙发布了新的文献求助10
1分钟前
今后应助Maximoff采纳,获得10
1分钟前
自信迎天发布了新的文献求助10
1分钟前
烂漫灯泡完成签到 ,获得积分10
1分钟前
桃桃星冰乐完成签到,获得积分10
2分钟前
fantianhui完成签到 ,获得积分10
2分钟前
鳗鱼厉发布了新的文献求助10
2分钟前
pan完成签到,获得积分10
2分钟前
打打应助pan采纳,获得10
2分钟前
jyy应助HHH采纳,获得10
2分钟前
善学以致用应助鳗鱼厉采纳,获得10
2分钟前
2分钟前
橙子发布了新的文献求助10
2分钟前
2分钟前
Bizibili完成签到,获得积分10
2分钟前
Maximoff发布了新的文献求助10
2分钟前
彭于晏应助Schroenius采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
annice发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054368
关于积分的说明 9041835
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505166
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864