Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization

脚印 DNA足迹 化学 氢-氘交换 生物物理学 蛋白质结构 质谱法 生物化学 DNA结合蛋白 DNA 生物 转录因子 色谱法 基因 基序列
作者
Ming Cheng,Michael L. Gross
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.accounts.4c00545
摘要

ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation. Building on firsthand experience in developing and applying protein footprinting, we provide an account of our progress in method development and applications.In the development section, we describe fast footprinting with reactive reagents (free radicals, carbenes, carbocations) with emphasis on fast photochemical oxidation of proteins (FPOP). The rates of the modifying reactions are usually faster than protein folding/unfolding, ensuring that the chemistry captures the change without biasing the structural information. We then describe slow, specific side-chain labeling or slow footprinting and hydrogen–deuterium exchange (HDX) to provide context for fast footprinting and to show that, with validation, these modifications can deliver valid structural information. One advantage of slow footprinting is that usually no special apparatus (e.g., laser, synchrotron) is needed. We acknowledge that no single footprint is sufficient, and complementary approaches are needed for structure comparisons.In the second part, we cover several of our footprinting applications for the study of biotherapeutics, metal-bound proteins, aggregating (amyloid) proteins, and integral membrane proteins (IMPs). Solving structural problems in these four areas is often challenging for other high-resolution approaches, motivating the development of protein footprinting as a complementary approach. For example, obtaining structural data for the bound and unbound forms of a protein requires that both forms are amenable for 3D structure determination. For problems of this type, information on changes in structure often provides an answer. For amyloid proteins, structures of the starting state (monomer) and the final fibril state are obtainable by standard methods, but the important structures causing disease appear to be those of soluble oligomers that are beyond high-resolution approaches because the mix of structures is polydisperse in number and size. Moreover, the relevant structures are those that occur in cell or in vivo, not in vitro, ruling out many current methods that are not up to the demands of working in complex milieu. IMPs are another appropriate target because they are unstable in water (in the absence of membranes, detergents) and may not retain their HOS during the long signal averaging needed for standard tools. Furthermore, the structural changes occurring in membrane transport or induced by drug binding or other interactions, for example, resist high resolution determination.We provide here an account on MS-based footprinting, broadly describing its multifaceted development, applications, and challenges based on our first-hand experience in fast and slow footprinting and in HDX. The Account is intended for investigators contemplating the use of these tools. We hope to catalyze refinements in methods and applications through collaborative, cross-disciplinary research that involves organic and analytical chemists, material scientists, and structural biologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
一一给一一的求助进行了留言
1秒前
隐形曼青应助胡豆采纳,获得10
1秒前
1秒前
2秒前
3秒前
科目三应助苹果紊采纳,获得10
3秒前
3秒前
Mry完成签到,获得积分10
3秒前
11完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
研友_ngJQzL完成签到,获得积分10
5秒前
5秒前
6秒前
Elan完成签到,获得积分10
6秒前
范范完成签到,获得积分20
7秒前
胡豆完成签到,获得积分10
7秒前
Akim应助廖少跑不快采纳,获得10
7秒前
莱特昊发布了新的文献求助10
8秒前
万能图书馆应助qianqina采纳,获得10
8秒前
张磊发布了新的文献求助10
8秒前
王麒发布了新的文献求助10
8秒前
hhh完成签到,获得积分10
9秒前
花花发布了新的文献求助10
9秒前
yuyyy发布了新的文献求助10
10秒前
77发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
动听曼荷完成签到,获得积分10
12秒前
悦耳怜珊完成签到 ,获得积分10
13秒前
CC完成签到,获得积分10
13秒前
14秒前
辛勤戎发布了新的文献求助10
15秒前
xc发布了新的文献求助10
17秒前
不摸鱼上啥班完成签到,获得积分10
17秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735