Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations

聚酰胺 计算机科学 化学 纳米技术 材料科学 生物化学 高分子化学
作者
Nohyeong Jeong,Shinyun Park,Subhamoy Mahajan,Ji Zhou,Jens Blotevogel,Ying Li,Tiezheng Tong,Yongsheng Chen
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41467-024-55320-9
摘要

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models. Utilizing the Shapley additive explanation method for XGBoost model interpretation unveils the impacts of both PFAS characteristics and membrane properties on model predictions. The examination of the impacts of chemical structure involves interpreting the multimodal transformer model incorporated with simplified molecular input line entry system strings through heat maps, providing a visual representation of the attention score assigned to each atom of PFAS molecules. Both ML interpretation methods highlight the dominance of electrostatic interaction in governing PFAS transport across polyamide membranes. The roles of functional groups in altering PFAS transport across membranes are further revealed by molecular simulations. The combination of ML with computer simulations not only advances our knowledge of PFAS removal by polyamide membranes, but also provides an innovative approach to facilitate data-driven feature selection for the development of high-performance membranes with improved PFAS removal efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoGuo完成签到,获得积分10
1秒前
吕敬瑶发布了新的文献求助10
1秒前
1秒前
2秒前
领导范儿应助zrl采纳,获得10
2秒前
俱乐部完成签到,获得积分10
2秒前
Orange应助包容的奇异果采纳,获得10
3秒前
茉莉是个饱饱完成签到,获得积分10
4秒前
FashionBoy应助不吃了采纳,获得10
5秒前
Ice完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
吕敬瑶完成签到,获得积分10
7秒前
8秒前
stone完成签到,获得积分10
8秒前
chinjaneking发布了新的文献求助10
10秒前
10秒前
10秒前
华仔应助yxc采纳,获得10
10秒前
11秒前
Hello应助YangLi采纳,获得10
11秒前
SciGPT应助yun采纳,获得10
11秒前
YS发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
思源应助Mc_Fan采纳,获得10
16秒前
zbm完成签到 ,获得积分10
16秒前
沉默的钵钵鸡完成签到,获得积分10
16秒前
18秒前
20秒前
甜心辣妹关注了科研通微信公众号
20秒前
red发布了新的文献求助10
21秒前
乐乐应助科学家采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
不吃了发布了新的文献求助10
22秒前
向上的小马完成签到,获得积分10
23秒前
23秒前
yun发布了新的文献求助10
24秒前
night发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858