亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Elevated Practical Volumetric Density and Cyclic Durability of Selenium Cathodes by Powder Microspheroidization and Kilogram‐Scale Atomic Layer Deposition Techniques

阴极 材料科学 硫族元素 原子层沉积 纳米技术 化学工程 沉积(地质) 涂层 图层(电子) 结晶学 化学 物理化学 沉积物 生物 工程类 古生物学
作者
Yi Li,Jianhui Zhu,Yuruo Qi,Maowen Xu,Jian Jiang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:15 (19) 被引量:1
标识
DOI:10.1002/aenm.202405532
摘要

Abstract Practical usage of high‐energy chalcogen cathodes, typically like selenium (Se), is plagued by compromised volumetric energy density and cyclic lifespan in pouch cells, due to the low cathode compactness and continuous Li 2 Se n shutting issues. Inspired by classic close‐packing theories and self‐limiting configurations, we propose to construct high‐tap‐density microsphere cathodes made of Se nano yolks and N‐rich carbon (NC)‐TiO 2 shells via a kilogram‐scale atomic layer deposition (ALD) technique. The utilized particle microspheroidization strategy makes powders approach the Max . theoretical volume fraction of 0.64, achieving intrinsically high tap density (2.06 g cm − 3 ) and large areal Se loading ratio beyond 8.4 mg cm −2 after slurry coating. A molecular‐engineered oxidative polypyrrole ( O ‐PPy) layer covered on Se surfaces plays an indispensable role in guaranteeing smooth ALD implementation. The formed robust NC‐TiO 2 microreactors solidly confining Se actives in spatial regions help to expedite Li 2 Se n phase conversions, rendering cathodes with a remarkable capacity of 502 mAh g −1 (0.5C) and far lessened capacity decay in all cycling. Their assembled pouch cells are ∼20% thinner than those of random‐shaped counterparts, showing an exceptionally high E v value over 1158.3 Wh L −1 . This work may propel the advent of Li‐chalcogen cells with unprecedented volumetric energy densities for near‐future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21_xxrr完成签到 ,获得积分10
刚刚
清新的夜蕾完成签到 ,获得积分10
1秒前
北北完成签到,获得积分10
1秒前
2秒前
小二郎应助xiang采纳,获得10
3秒前
6秒前
冉亦完成签到,获得积分10
6秒前
卡卡东完成签到 ,获得积分10
18秒前
cao完成签到,获得积分10
18秒前
木棉完成签到,获得积分10
18秒前
hhh完成签到 ,获得积分10
20秒前
26秒前
FashionBoy应助我有一壶酒采纳,获得10
26秒前
Plikestudy发布了新的文献求助30
28秒前
科研通AI6.1应助Okanryo采纳,获得10
28秒前
30秒前
丸子完成签到 ,获得积分10
32秒前
34秒前
35秒前
36秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
科目三应助LY采纳,获得10
41秒前
41秒前
xiang发布了新的文献求助10
42秒前
yangzai完成签到 ,获得积分0
43秒前
alva发布了新的文献求助10
44秒前
katata完成签到 ,获得积分10
46秒前
48秒前
小蘑菇应助心灵美猎豹采纳,获得10
49秒前
AEGUO完成签到 ,获得积分10
52秒前
53秒前
53秒前
Criminology34应助后来采纳,获得10
53秒前
科研通AI6.1应助aaa采纳,获得10
55秒前
妖妖灵发布了新的文献求助10
59秒前
兜兜发布了新的文献求助10
59秒前
1分钟前
桐桐应助小鱼采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094