Co-dance with Ambiguity: An Ambiguity-Aware Facial Expression Recognition Framework for More Robustness

模棱两可 稳健性(进化) 计算机科学 人工智能 特征提取 面部表情 模式识别(心理学) 杠杆(统计) 机器学习 生物化学 基因 化学 程序设计语言
作者
Xinran Cao,Liang Luo,Yu Gu,Fuji Ren
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3527010
摘要

Facial Expression Recognition (FER) has received considerable research attention owing to its poor robustness in real-world scenarios. This issue, defined as the uncertainty problem in FER, is often solved by recognizing the noise samples in FER datasets. Unlike noise samples with incorrect labels, ambiguous samples exhibit mixed emotions that align with multiple basic expressions. It makes them indistinguishable in training and harms model robustness. To address this issue, we propose an ambiguity-aware FER framework called Co-dance with Ambiguity (CoA). CoA combines an Emotion Extraction Module (EEM) and an Expression Description Module (EDM) to leverage ambiguity for better performance and robustness. Specifically, EEM employs a coupled-stream structure to extract both representative and detailed features through diverse-scale fusion and patch-attention sensing. EDM adjusts ground-truth labels of ambiguous samples by introducing label pairs derived from the top two highest predictions, describing the mixed-emotion nature. The pairs guide the model to align feature extraction with the inherent ambiguity of ambiguous samples during training. Extensive experiments on five in-the-wild FER datasets demonstrate the superiority of CoA over advanced methods. Moreover, introducing ambiguity-aware strategies enriches feature representations and significantly enhances robustness when faced with a high ratio of ambiguous samples in FER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路卡利欧发布了新的文献求助10
刚刚
1秒前
机智衫完成签到,获得积分10
2秒前
正直千兰发布了新的文献求助10
2秒前
所所应助LYPY采纳,获得10
2秒前
wenlin发布了新的文献求助10
4秒前
biubiu发布了新的文献求助10
5秒前
FashionBoy应助害羞的樱采纳,获得10
5秒前
z11完成签到,获得积分10
7秒前
Jessie发布了新的文献求助30
8秒前
酷炫蛋挞发布了新的文献求助10
9秒前
boblau完成签到,获得积分10
10秒前
wenlin完成签到,获得积分10
15秒前
18秒前
邓佳鑫Alan应助李李李李李采纳,获得10
22秒前
科研通AI5应助xiao采纳,获得10
23秒前
23秒前
Zbzb发布了新的文献求助10
24秒前
科研通AI5应助左岸采纳,获得30
25秒前
26秒前
鲜蘑发布了新的文献求助10
31秒前
32秒前
Zbzb完成签到,获得积分20
33秒前
33秒前
33秒前
丘比特应助七七采纳,获得10
35秒前
Lucas应助rewind采纳,获得10
36秒前
香蕉觅云应助Long47777采纳,获得10
36秒前
北风歌完成签到,获得积分10
38秒前
左岸发布了新的文献求助30
38秒前
白爪发布了新的文献求助10
39秒前
CipherSage应助鲜蘑采纳,获得10
39秒前
41秒前
43秒前
45秒前
rewind完成签到,获得积分10
46秒前
lcx发布了新的文献求助10
46秒前
46秒前
Vicky完成签到 ,获得积分10
47秒前
香蕉觅云应助方法采纳,获得10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959