Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation

光伏系统 材料科学 学习迁移 能量转移 翻译 能量(信号处理) 工程物理 纳米技术 人工智能 计算机科学 电气工程 工程类 数学 统计 程序设计语言
作者
Cong Nie,Kuo Wang,Haixin Zhou,Jiahao Deng,Ziye Chen,Kang Zhang,Lingjiao Chen,Di Huang,Jiaojiao Liang,Ling Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (48): 66316-66326 被引量:6
标识
DOI:10.1021/acsami.4c15835
摘要

It is challenging to build a deep learning predictive model using traditional data mining methods due to the scarcity of available data, and the model's internal decision-making process is often nonintuitive and difficult to explain. In this work, a directed message passing neural network model with transfer learning (TL) and chemprop interpreter is proposed to improve energy levels prediction and visualization for organic photovoltaic materials. The established model shows the best performance, with coefficient of determination reaching 0.787 for HOMO and 0.822 for LUMO in a small testing set after TL, compared to the other four models. Then, the chemprop interpreter analyzes local and global effects of 12 molecular structures on the energy levels for organic materials. After a comprehensive analysis of the energy level effects of nonfullerene Y-series, IT-series, and other organic materials, 12 new IT-series derivatives are designed. 1,1-dicyano-methylene-3-indanone (IC) end group halogenation can reduce HOMO and LUMO energy levels to varying degrees, while IC end group modified by electron-withdrawing aromatic groups can increase HOMO and LUMO energy levels and obtain relatively smaller electrostatic potential (ESP) to reducing intermolecular interactions. The influence of side-chain modification on energy levels is limited. It is worth mentioning that the predicted results of IT-series derivatives match density functional theory calculations. The model also shows good generalization and transferability for predicting the energy levels of other organic electronic materials. This work not only provides a cost-effective model for predicting the energy levels of organic photovoltaic materials but also explains the potential bridge between molecular structure and electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhouzhou完成签到,获得积分10
刚刚
汉堡包应助夏cai采纳,获得10
2秒前
杨德凯完成签到,获得积分10
2秒前
2秒前
健壮鸡翅完成签到,获得积分10
2秒前
2秒前
科研通AI6应助无限灵竹采纳,获得10
3秒前
3秒前
清爽的青丝完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
斯文败类应助懵懂的采梦采纳,获得30
5秒前
5秒前
赘婿应助LNE采纳,获得10
6秒前
彭于晏应助小玉采纳,获得10
7秒前
zm完成签到,获得积分10
7秒前
哈哈酱发布了新的文献求助10
7秒前
mmmm完成签到,获得积分20
8秒前
cc完成签到 ,获得积分10
8秒前
kaiqiang完成签到,获得积分20
8秒前
自由友容发布了新的文献求助10
9秒前
核潜艇很优秀应助abdu采纳,获得30
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
无聊的万天完成签到,获得积分10
10秒前
11秒前
殷少华发布了新的文献求助10
11秒前
11秒前
天天快乐应助汪宇采纳,获得10
12秒前
14秒前
sgt发布了新的文献求助10
14秒前
moon完成签到,获得积分10
15秒前
15秒前
15秒前
小蘑菇应助赶路人采纳,获得10
15秒前
16秒前
16秒前
心想事成完成签到,获得积分10
17秒前
自由友容完成签到,获得积分20
17秒前
HOAN应助坚定的半邪采纳,获得50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986