Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation

光伏系统 材料科学 学习迁移 能量转移 翻译 能量(信号处理) 工程物理 纳米技术 人工智能 计算机科学 电气工程 工程类 数学 统计 程序设计语言
作者
Cong Nie,Kuo Wang,Haixin Zhou,Jiahao Deng,Ziye Chen,Kang Zhang,Lingjiao Chen,Di Huang,Jiaojiao Liang,Ling Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (48): 66316-66326 被引量:6
标识
DOI:10.1021/acsami.4c15835
摘要

It is challenging to build a deep learning predictive model using traditional data mining methods due to the scarcity of available data, and the model's internal decision-making process is often nonintuitive and difficult to explain. In this work, a directed message passing neural network model with transfer learning (TL) and chemprop interpreter is proposed to improve energy levels prediction and visualization for organic photovoltaic materials. The established model shows the best performance, with coefficient of determination reaching 0.787 for HOMO and 0.822 for LUMO in a small testing set after TL, compared to the other four models. Then, the chemprop interpreter analyzes local and global effects of 12 molecular structures on the energy levels for organic materials. After a comprehensive analysis of the energy level effects of nonfullerene Y-series, IT-series, and other organic materials, 12 new IT-series derivatives are designed. 1,1-dicyano-methylene-3-indanone (IC) end group halogenation can reduce HOMO and LUMO energy levels to varying degrees, while IC end group modified by electron-withdrawing aromatic groups can increase HOMO and LUMO energy levels and obtain relatively smaller electrostatic potential (ESP) to reducing intermolecular interactions. The influence of side-chain modification on energy levels is limited. It is worth mentioning that the predicted results of IT-series derivatives match density functional theory calculations. The model also shows good generalization and transferability for predicting the energy levels of other organic electronic materials. This work not only provides a cost-effective model for predicting the energy levels of organic photovoltaic materials but also explains the potential bridge between molecular structure and electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的夜梅完成签到,获得积分20
刚刚
Vivian_Zhang应助zzz采纳,获得10
刚刚
橘子味完成签到,获得积分10
刚刚
aniu发布了新的文献求助10
刚刚
Rainnnn完成签到,获得积分20
刚刚
刚刚
why完成签到,获得积分10
1秒前
顾北完成签到,获得积分10
1秒前
斑布发布了新的文献求助10
1秒前
科研通AI6应助新嘟采纳,获得10
1秒前
LL77完成签到 ,获得积分10
1秒前
1秒前
lijia3发布了新的文献求助10
2秒前
彭于晏应助高高的冰绿采纳,获得10
2秒前
完美世界应助Simms采纳,获得10
2秒前
英姑应助Sitroul采纳,获得10
2秒前
2秒前
健忘芷发布了新的文献求助20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
lijs给lijs的求助进行了留言
3秒前
终醒发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
我是老大应助ZZZ采纳,获得10
4秒前
nikiniki完成签到,获得积分20
4秒前
王m完成签到,获得积分10
5秒前
5秒前
残月初升完成签到,获得积分10
5秒前
Rainnnn发布了新的文献求助10
5秒前
莓气泄露发布了新的文献求助10
5秒前
5秒前
gaterina发布了新的文献求助10
6秒前
乖乖猫完成签到,获得积分10
6秒前
kao2oak完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401