Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation

光伏系统 材料科学 学习迁移 能量转移 翻译 能量(信号处理) 工程物理 纳米技术 人工智能 计算机科学 电气工程 工程类 统计 数学 程序设计语言
作者
Cong Nie,Kuo Wang,Haixin Zhou,Jiahao Deng,Ziye Chen,Kang Zhang,Lingjiao Chen,Di Huang,Jiaojiao Liang,Ling Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c15835
摘要

It is challenging to build a deep learning predictive model using traditional data mining methods due to the scarcity of available data, and the model's internal decision-making process is often nonintuitive and difficult to explain. In this work, a directed message passing neural network model with transfer learning (TL) and chemprop interpreter is proposed to improve energy levels prediction and visualization for organic photovoltaic materials. The established model shows the best performance, with coefficient of determination reaching 0.787 for HOMO and 0.822 for LUMO in a small testing set after TL, compared to the other four models. Then, the chemprop interpreter analyzes local and global effects of 12 molecular structures on the energy levels for organic materials. After a comprehensive analysis of the energy level effects of nonfullerene Y-series, IT-series, and other organic materials, 12 new IT-series derivatives are designed. 1,1-dicyano-methylene-3-indanone (IC) end group halogenation can reduce HOMO and LUMO energy levels to varying degrees, while IC end group modified by electron-withdrawing aromatic groups can increase HOMO and LUMO energy levels and obtain relatively smaller electrostatic potential (ESP) to reducing intermolecular interactions. The influence of side-chain modification on energy levels is limited. It is worth mentioning that the predicted results of IT-series derivatives match density functional theory calculations. The model also shows good generalization and transferability for predicting the energy levels of other organic electronic materials. This work not only provides a cost-effective model for predicting the energy levels of organic photovoltaic materials but also explains the potential bridge between molecular structure and electronic properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助narssu采纳,获得10
1秒前
changge完成签到,获得积分10
1秒前
1秒前
2秒前
威武的初蓝完成签到,获得积分10
2秒前
111发布了新的文献求助10
3秒前
3秒前
3秒前
彭于晏应助熊一只采纳,获得10
3秒前
华仔应助冷酷的孤容采纳,获得10
3秒前
稳重的又柔完成签到,获得积分10
3秒前
李健应助我要发sci采纳,获得10
4秒前
丝丝完成签到,获得积分20
5秒前
顾矜应助吹风的田采纳,获得10
5秒前
有野发布了新的文献求助10
5秒前
CipherSage应助roselin26采纳,获得20
5秒前
Hello应助lixl0725采纳,获得10
6秒前
CipherSage应助暴躁的电脑采纳,获得10
7秒前
楠楠小猪完成签到,获得积分10
7秒前
Lucky完成签到 ,获得积分10
7秒前
SciGPT应助marshyyy采纳,获得10
7秒前
7秒前
changge发布了新的文献求助10
8秒前
8秒前
波粒二象主义完成签到,获得积分10
8秒前
酷波er应助zzk采纳,获得10
8秒前
搜集达人应助微笑枫采纳,获得10
8秒前
险胜应助瑾宜采纳,获得10
9秒前
9秒前
丝丝发布了新的文献求助10
9秒前
ff完成签到 ,获得积分10
9秒前
disciple发布了新的文献求助10
9秒前
Hzz完成签到,获得积分10
10秒前
潇洒如凡完成签到,获得积分10
11秒前
11秒前
在水一方应助ADDDD采纳,获得10
11秒前
隐形曼青应助淡淡的飞雪采纳,获得10
11秒前
11秒前
Marvel发布了新的文献求助10
11秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945