Combination of Transfer Learning and Chemprop Interpreter with Support of Deep Learning for the Energy Levels of Organic Photovoltaic Materials Prediction and Regulation

光伏系统 材料科学 学习迁移 能量转移 翻译 能量(信号处理) 工程物理 纳米技术 人工智能 计算机科学 电气工程 工程类 数学 统计 程序设计语言
作者
Cong Nie,Kuo Wang,Haixin Zhou,Jiahao Deng,Ziye Chen,Kang Zhang,Lingjiao Chen,Di Huang,Jiaojiao Liang,Ling Zhao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:1
标识
DOI:10.1021/acsami.4c15835
摘要

It is challenging to build a deep learning predictive model using traditional data mining methods due to the scarcity of available data, and the model's internal decision-making process is often nonintuitive and difficult to explain. In this work, a directed message passing neural network model with transfer learning (TL) and chemprop interpreter is proposed to improve energy levels prediction and visualization for organic photovoltaic materials. The established model shows the best performance, with coefficient of determination reaching 0.787 for HOMO and 0.822 for LUMO in a small testing set after TL, compared to the other four models. Then, the chemprop interpreter analyzes local and global effects of 12 molecular structures on the energy levels for organic materials. After a comprehensive analysis of the energy level effects of nonfullerene Y-series, IT-series, and other organic materials, 12 new IT-series derivatives are designed. 1,1-dicyano-methylene-3-indanone (IC) end group halogenation can reduce HOMO and LUMO energy levels to varying degrees, while IC end group modified by electron-withdrawing aromatic groups can increase HOMO and LUMO energy levels and obtain relatively smaller electrostatic potential (ESP) to reducing intermolecular interactions. The influence of side-chain modification on energy levels is limited. It is worth mentioning that the predicted results of IT-series derivatives match density functional theory calculations. The model also shows good generalization and transferability for predicting the energy levels of other organic electronic materials. This work not only provides a cost-effective model for predicting the energy levels of organic photovoltaic materials but also explains the potential bridge between molecular structure and electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daqisong完成签到,获得积分10
1秒前
翔哥发布了新的文献求助10
1秒前
mm完成签到,获得积分10
2秒前
可爱的函函应助WANDour采纳,获得10
2秒前
smile完成签到,获得积分10
4秒前
bkagyin应助cyf采纳,获得10
4秒前
6秒前
圆规完成签到,获得积分10
6秒前
翔哥完成签到,获得积分10
8秒前
9秒前
LHP完成签到 ,获得积分10
9秒前
9秒前
852应助亲爱的冯老师采纳,获得10
9秒前
慕青应助大气的画板采纳,获得10
10秒前
rodrisk完成签到 ,获得积分10
10秒前
欢呼的世立完成签到 ,获得积分10
11秒前
guan完成签到,获得积分10
11秒前
虚拟的大地完成签到 ,获得积分10
12秒前
12秒前
一味地丶逞强完成签到,获得积分10
12秒前
13秒前
14秒前
青青完成签到,获得积分10
15秒前
沈格完成签到,获得积分10
18秒前
pogia完成签到,获得积分10
18秒前
WENBENDING完成签到,获得积分10
19秒前
名不显时心不朽完成签到,获得积分10
19秒前
20秒前
仙女完成签到 ,获得积分10
21秒前
22秒前
LiLi完成签到,获得积分10
22秒前
23秒前
24秒前
爱吃蔬菜发布了新的文献求助10
24秒前
zhaoyanzhi发布了新的文献求助10
24秒前
24秒前
wocao完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379319
求助须知:如何正确求助?哪些是违规求助? 4503737
关于积分的说明 14016376
捐赠科研通 4412441
什么是DOI,文献DOI怎么找? 2423840
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394230