已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Label-free discrimination analysis of breast cancer tumor and adjacent tissues of patients after neoadjuvant treatment using Raman spectroscopy: a diagnostic study

乳腺癌 医学 新辅助治疗 外科肿瘤学 肿瘤科 癌症 接收机工作特性 内科学 病理
作者
Yifan Wu,Xinran Tian,Jiayi Ma,Yanping Lin,Jian Ye,Yaohui Wang,Jingsong Lu,Wenjin Yin
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002201
摘要

Background and Objective: Breast-conserving surgery (BCS) plays a crucial role in breast cancer treatment, with a primary focus on ensuring cancer-free surgical margins, particularly for patients undergoing neoadjuvant treatment. After neoadjuvant treatment, tumor regression can complicate the differentiation between breast cancer and adjacent tissues. Raman spectroscopy, as a rapid and non-invasive optical technique, offers the advantage of providing detailed biochemical information and molecular signatures of internal molecular components in tissue samples. Despite its potential, there is currently no research on using label-free Raman spectroscopy to distinguish between breast cancer tumors and adjacent tissues after neoadjuvant treatment. This study intends to distinguish between cancer and adjacent tissues after neoadjuvant treatment in breast cancer through label-free Raman spectroscopy. Methods: In this study, the intraoperative frozen samples of breast cancer tumor and adjacent tissue were collected from patients who underwent neoadjuvant treatment during surgery. The samples were examined using Raman confocal microscopy, and Raman spectra were collected by LabSpec6 software. Spectra were preprocessed by Savitz-Golay filter, adaptive iterative reweighted penalized least squares and MinMax normalization method. The differences in Raman spectra between breast cancer tumor and adjacent tissues after neoadjuvant treatment were analyzed by Wilcoxon rank-sum test, with a Bonferroni correction for multiple comparisons. Based on the support vector machine (SVM) method in machine learning, a predictive model for classification was established in the total group and subgroups of different hormone receptor (HR) status, human epidermal growth factor receptor 2 (HER2) status and Ki-67 expression level. The independent test set was used to evaluate the performance of the model, and the area under curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity, specificity and accuracy of different models were obtained. Result: This study comprised 4260 Raman spectra of breast cancer tumor and adjacent frozen tissue samples from 142 breast cancer patients treated with neoadjuvant treatment. The Raman peaks associated with nucleotides and their metabolites in the Raman spectra of breast cancer tumor tissues were higher in intensities than those of adjacent tissues after neoadjuvant therapy (676 cm −1 : Bonferroni adjusted P < 0.0001; 724 cm −1 : P < 0.0001; 754 cm −1 : P < 0.0001), and the Raman peaks from amide III bands were more intense (1271 cm −1 : P < 0.01). Multivariate curve resolution- alternating least squares (MCR-ALS) decomposition of Raman spectra revealed reduced lipid content and increased collagen and nucleic acid content in breast cancer tumor tissues compared to adjacent tissues following neoadjuvant therapy. The predictive model based on the Raman spectral signature of breast cancer tumor and adjacent tissues after neoadjuvant treatment achieved an AUC of 0.98, with accuracy, sensitivity, and specificity values of 0.89, 0.97, and 0.83, respectively. The AUC of subgroup analysis according to different status of molecular pathological biomarkers was stably around 99%. Conclusion: This study demonstrated that label-free Raman spectroscopy can differentiate cancer and adjacent tissues of breast cancer patients treated with neoadjuvant therapy thorough getting the panoramic perspective of the biochemical compounds for the first time. Our study provided a novel technique for determining the margin status in BCS in breast cancer following neoadjuvant treatment rapidly and precisely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张晓倩完成签到 ,获得积分10
1秒前
3秒前
春鸮鸟完成签到 ,获得积分10
6秒前
Lin2019发布了新的文献求助10
8秒前
小小铱完成签到,获得积分10
10秒前
雪衣豆沙发布了新的文献求助10
10秒前
10秒前
笑点低听露完成签到,获得积分10
15秒前
adeline发布了新的文献求助10
15秒前
重要元灵完成签到 ,获得积分10
17秒前
17秒前
18秒前
无奈的盼望完成签到 ,获得积分10
20秒前
笑点低煎饼完成签到,获得积分10
21秒前
曹瑞霞应助wanli采纳,获得10
22秒前
22秒前
想不想发布了新的文献求助10
26秒前
hhh完成签到 ,获得积分10
27秒前
孤独黑猫完成签到 ,获得积分10
28秒前
且从容完成签到,获得积分10
31秒前
GuGuGaGaAH完成签到 ,获得积分10
31秒前
完美世界应助麦克尔采纳,获得10
32秒前
小夏完成签到 ,获得积分10
38秒前
少清纳言完成签到,获得积分10
41秒前
科研通AI2S应助wanli采纳,获得10
41秒前
pluto应助想不想采纳,获得10
42秒前
优美的契完成签到,获得积分10
43秒前
思源应助快乐缘郡采纳,获得10
44秒前
50秒前
在水一方应助斯文发糕采纳,获得10
52秒前
jasonjiang完成签到 ,获得积分0
52秒前
研友_ZA2Y68发布了新的文献求助10
56秒前
852应助木讷山采纳,获得30
56秒前
Cxxxx完成签到 ,获得积分10
59秒前
1分钟前
Akim应助shuo0976采纳,获得10
1分钟前
1分钟前
多年以后完成签到,获得积分10
1分钟前
教主发布了新的文献求助10
1分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270247
关于积分的说明 9965166
捐赠科研通 2985226
什么是DOI,文献DOI怎么找? 1637815
邀请新用户注册赠送积分活动 777727
科研通“疑难数据库(出版商)”最低求助积分说明 747171