医学
腰椎
磁共振成像
放射科
人工智能
接收机工作特性
矢状面
机器学习
计算机科学
内科学
作者
Zhiming Liu,Hao Zhang,Min Zhang,Changpeng Qu,Lei Li,Yihao Sun,Xuexiao Ma
标识
DOI:10.3389/fsurg.2024.1458569
摘要
Objective To develop and validate an artificial intelligence diagnostic model for identifying calcified lumbar disc herniation based on lateral lumbar magnetic resonance imaging(MRI). Methods During the period from January 2019 to March 2024, patients meeting the inclusion criteria were collected. All patients had undergone both lumbar spine MRI and computed tomography(CT) examinations, with regions of interest (ROI) clearly marked on the lumbar sagittal MRI images. The participants were then divided into separate sets for training, testing, and external validation. Ultimately, we developed a deep learning model using the ResNet-34 algorithm model and evaluated its diagnostic efficacy. Results A total of 1,224 eligible patients were included in this study, consisting of 610 males and 614 females, with an average age of 53.34 ± 10.61 years. Notably, the test datasets displayed an impressive classification accuracy rate of 91.67%, whereas the external validation datasets achieved a classification accuracy rate of 88.76%. Among the test datasets, the ResNet34 model outperformed other models, yielding the highest area under the curve (AUC) of 0.96 (95% CI: 0.93, 0.99). Additionally, the ResNet34 model also exhibited superior performance in the external validation datasets, exhibiting an AUC of 0.88 (95% CI: 0.80, 0.93). Conclusion In this study, we established a deep learning model with excellent performance in identifying calcified intervertebral discs, thereby offering a valuable and efficient diagnostic tool for clinical surgeons.
科研通智能强力驱动
Strongly Powered by AbleSci AI