Compare three deep learning-based artificial intelligence models for classification of calcified lumbar disc herniation: a multicenter diagnostic study

医学 腰椎 磁共振成像 放射科 人工智能 接收机工作特性 矢状面 机器学习 计算机科学 内科学
作者
Zhiming Liu,Hao Zhang,Min Zhang,Changpeng Qu,Lei Li,Yihao Sun,Xuexiao Ma
出处
期刊:Frontiers in Surgery [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fsurg.2024.1458569
摘要

Objective To develop and validate an artificial intelligence diagnostic model for identifying calcified lumbar disc herniation based on lateral lumbar magnetic resonance imaging(MRI). Methods During the period from January 2019 to March 2024, patients meeting the inclusion criteria were collected. All patients had undergone both lumbar spine MRI and computed tomography(CT) examinations, with regions of interest (ROI) clearly marked on the lumbar sagittal MRI images. The participants were then divided into separate sets for training, testing, and external validation. Ultimately, we developed a deep learning model using the ResNet-34 algorithm model and evaluated its diagnostic efficacy. Results A total of 1,224 eligible patients were included in this study, consisting of 610 males and 614 females, with an average age of 53.34 ± 10.61 years. Notably, the test datasets displayed an impressive classification accuracy rate of 91.67%, whereas the external validation datasets achieved a classification accuracy rate of 88.76%. Among the test datasets, the ResNet34 model outperformed other models, yielding the highest area under the curve (AUC) of 0.96 (95% CI: 0.93, 0.99). Additionally, the ResNet34 model also exhibited superior performance in the external validation datasets, exhibiting an AUC of 0.88 (95% CI: 0.80, 0.93). Conclusion In this study, we established a deep learning model with excellent performance in identifying calcified intervertebral discs, thereby offering a valuable and efficient diagnostic tool for clinical surgeons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助wangjustb采纳,获得10
1秒前
慕青应助mylpp采纳,获得10
1秒前
REN完成签到,获得积分10
1秒前
2秒前
守护最好的坤坤完成签到,获得积分10
2秒前
共享精神应助听思念渐近采纳,获得10
3秒前
orixero应助mm采纳,获得10
3秒前
3秒前
传奇3应助Aliofyou采纳,获得10
3秒前
chd完成签到 ,获得积分10
4秒前
小王完成签到,获得积分10
5秒前
宸一完成签到,获得积分10
5秒前
Tangyartie完成签到 ,获得积分10
5秒前
季冬十五完成签到 ,获得积分10
6秒前
黑米粥完成签到,获得积分0
6秒前
Haonan完成签到,获得积分10
7秒前
害羞破茧完成签到,获得积分10
7秒前
领导范儿应助jimoon采纳,获得10
8秒前
wzx完成签到,获得积分10
8秒前
cocolu应助Jason采纳,获得10
8秒前
8秒前
Muncy完成签到 ,获得积分10
10秒前
10秒前
红星路吃饼子的派大星完成签到 ,获得积分10
10秒前
11秒前
ma完成签到 ,获得积分10
11秒前
yingme完成签到,获得积分10
11秒前
wanci应助284546采纳,获得10
11秒前
抓到你啦完成签到,获得积分10
11秒前
12秒前
mylpp完成签到,获得积分20
13秒前
缪甲烷发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
qian完成签到 ,获得积分10
16秒前
友好的寻琴完成签到,获得积分10
16秒前
甜蜜的阳光完成签到 ,获得积分10
16秒前
彭于晏应助南瓜采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311526
求助须知:如何正确求助?哪些是违规求助? 2944297
关于积分的说明 8518278
捐赠科研通 2619707
什么是DOI,文献DOI怎么找? 1432509
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649903