Mining soil heavy metal inversion based on Levy Flight Cauchy Gaussian perturbation sparrow search algorithm support vector regression (LSSA-SVR)

支持向量机 反演(地质) 柯西分布 摄动(天文学) 高斯分布 回归 算法 数学 地质学 应用数学 土壤科学 计算机科学 数学分析 物理 统计 化学 计算化学 人工智能 地貌学 构造盆地 量子力学
作者
Meng Luo,Meichen Liu,Shengwei Zhang,Jing Gao,Xiaojing Zhang,Ruishen Li,Lin Xi,Shuai Wang
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:287: 117295-117295
标识
DOI:10.1016/j.ecoenv.2024.117295
摘要

Soil heavy metal pollution in mining areas poses severe challenges to the ecological environment. In recent years, machine learning has been widely used in heavy metal inversion by hyperspectral data. However, deterministic algorithms and probabilistic algorithms may confront local optimal solutions in practical applications. The local optimal solution is not the optimal value obtained within the entire defined interval, and as a result will affect the reliability of these approaches. This paper proposes a Levy Flight Cauchy Gaussian perturbation Sparrow Search algorithm Support Vector Regression (LSSA-SVR) soil heavy metal content prediction model. It introduces Levy Flight (LF) measurement and Cauchy Gaussian perturbation based on the Sparrow search algorithm. The LSSA-SVR model was shown to increase the breadth of solutions searched, avoiding the local optimal solution problem. When applied to mining soil heavy metal experiments, we found that the LSSA-SVR model gave a good fit for the elements Cu, Zn, As, and Pb. The correlation coefficients between the predicted results and the actual results of the four elements were all above 0.94. The heavy metal predicted results of LSSA-SVR have a small error margin in both the overall distribution and in individual differences. This study provides an efficient and accurate monitoring method for mining soil heavy metal inversion. It also provides strong support for environmental management and soil remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到 ,获得积分10
刚刚
拾壹完成签到,获得积分10
8秒前
雪花完成签到,获得积分10
10秒前
清风完成签到 ,获得积分10
10秒前
雪花发布了新的文献求助10
14秒前
秀丽笑容完成签到 ,获得积分10
18秒前
江湖应助聪慧芷巧采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
Rjy完成签到 ,获得积分10
26秒前
性感母蟑螂完成签到 ,获得积分10
32秒前
ruochenzu完成签到,获得积分10
34秒前
陈尹蓝完成签到 ,获得积分10
35秒前
天道酬勤完成签到,获得积分10
37秒前
39秒前
仁爱的谷南完成签到,获得积分10
39秒前
雯雯完成签到 ,获得积分10
41秒前
一路有你完成签到 ,获得积分10
41秒前
42秒前
ruochenzu发布了新的文献求助10
42秒前
44秒前
wanghao完成签到 ,获得积分10
45秒前
图图发布了新的文献求助10
45秒前
十三完成签到 ,获得积分10
45秒前
聪慧芷巧完成签到,获得积分10
46秒前
米博士完成签到,获得积分10
47秒前
研友_VZGVzn完成签到,获得积分10
48秒前
Cheung2121发布了新的文献求助30
49秒前
黄芩完成签到 ,获得积分10
50秒前
1分钟前
秋半梦完成签到,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
彩色半烟完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ning完成签到,获得积分10
1分钟前
图图完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
ludong_0完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022