DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model

配体(生物化学) 蛋白质配体 计算生物学 药物发现 人工智能 化学 计算机科学 生物 生物化学 受体
作者
Orhun Vural,Leon Jololian,Lurong Pan
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/tcbb.2024.3493820
摘要

The analysis of protein-ligand binding sites plays a crucial role in the initial stages of drug discovery. Accurately predicting the ligand types that are likely to bind to protein-ligand binding sites enables more informed decision making in drug design. Our study, DeepLigType, determines protein-ligand binding sites using Fpocket and then predicts the ligand type of these pockets with the deep learning model, Convolutional Block Attention Module (CBAM) with ResNet. CBAM-ResNet has been trained to accurately predict five distinct ligand types. We classified protein-ligand binding sites into five different categories according to the type of response ligands cause when they bind to their target proteins, which are antagonist, agonist, activator, inhibitor, and others. We created a novel dataset, referred to as LigType5, from the widely recognized PDBbind and scPDB dataset for training and testing our model. While the literature mostly focuses on the specificity and characteristic analysis of protein binding sites by experimental (laboratory-based) methods, we propose a computational method with the DeepLigType architecture. DeepLigType demonstrated an accuracy of 74.30% and an AUC of 0.83 in ligand type prediction on a novel test dataset using the CBAM-ResNet deep learning model. For access to the code implementation of this research, please visit our GitHub repository at https://github.com/drorhunvural/DeepLigType.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助LinYX采纳,获得10
5秒前
yanzu应助qingjiu采纳,获得10
6秒前
fanfan完成签到 ,获得积分10
11秒前
14秒前
ilk666完成签到,获得积分10
16秒前
105完成签到,获得积分10
20秒前
23发布了新的文献求助10
20秒前
20秒前
子皿完成签到 ,获得积分10
23秒前
852应助ilk666采纳,获得10
24秒前
guandada发布了新的文献求助10
27秒前
可爱的函函应助tangz采纳,获得10
27秒前
30秒前
虎虎关注了科研通微信公众号
33秒前
该房地产个人的完成签到,获得积分10
33秒前
乐乐是一只大黄面包完成签到,获得积分10
36秒前
严锦强完成签到,获得积分10
37秒前
weiwei完成签到,获得积分10
37秒前
37秒前
Levi完成签到,获得积分10
38秒前
40秒前
cdercder应助xf采纳,获得10
41秒前
Agamemnon完成签到,获得积分10
42秒前
43秒前
念梦完成签到,获得积分10
44秒前
44秒前
可可发布了新的文献求助10
44秒前
在水一方应助粒子采纳,获得10
45秒前
rputation完成签到 ,获得积分10
47秒前
48秒前
48秒前
49秒前
山姆弟弟完成签到 ,获得积分10
50秒前
阿南完成签到 ,获得积分10
50秒前
51秒前
宇文紫真发布了新的文献求助30
53秒前
斯文麦片完成签到 ,获得积分10
54秒前
斯文败类应助於如风采纳,获得10
55秒前
55秒前
超级李包包完成签到,获得积分10
57秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675273
求助须知:如何正确求助?哪些是违规求助? 3230125
关于积分的说明 9788992
捐赠科研通 2940956
什么是DOI,文献DOI怎么找? 1612268
邀请新用户注册赠送积分活动 761065
科研通“疑难数据库(出版商)”最低求助积分说明 736596