Spin-coated synthesis of polyvinylidene fluoride-barium titanate nanocomposite piezoelectric flexible thin films

聚偏氟乙烯 钛酸钡 材料科学 压电 纳米复合材料 薄膜 旋涂 复合材料 钛酸酯 氟化物 纳米技术 陶瓷 聚合物 无机化学 化学
作者
Sivabalan Kaniapan,Anil Prathuru,Nadimul Haque Faisal
标识
DOI:10.1117/12.3031523
摘要

Energy derived from mechanical deformation is one of the cleaner energy options known as piezoelectric. Polyvinylidene fluoride (PVDF) has been identified to hold the characteristics of piezoelectric and dielectric properties due to good energy storage capacity and electrical breakdown strength. However, lower piezoelectricity limits its applicability, and therefore, advancement is needed, potentially through doping or filler like barium titanate (BaTiO3 or BTO). Several fabrication approaches have been proposed, yet spin coating is desirable vis. for its reliability, ease of replicable, cost-effectiveness, and uniform coating. In this study, thin films were fabricated using spin coating with 5 wt.% and 12 wt.% BTO/PVDF compositions at 1000 rpm and 4000 rpm. The morphological characteristics of the materials were studied using Fourier transform infrared (FTIR) and scanning electron microscope (SEM) analysis techniques. The results showed that the 5wt.% BTO/PVDF film at 4000 rpm and annealed at 120 °C for 6 hours exhibited a maximum relative beta (β) fraction of around 94%. SEM images revealed the uniform distribution of BTO particles with less agglomeration in the PVDF matrix, indicating that adding BTO promotes nucleation sites for forming a more ordered crystalline structure. Despite that, further validation of crystallinity percentage is required to assess the enhancement made by the BTO fillers in a polymer matrix entirely. Overall, the experiment demonstrated that spin coating can effectively enhance the β-phase of PVDF (β-phase is desirable due to relatively high dielectric constant and piezoelectricity) with the addition of ceramic fillers such as BTO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观可仁发布了新的文献求助10
1秒前
1秒前
paopao发布了新的文献求助10
2秒前
快乐元芹完成签到,获得积分10
2秒前
3秒前
小安发布了新的文献求助10
3秒前
小富婆完成签到 ,获得积分10
3秒前
4秒前
4秒前
葫芦娃大铁锤完成签到 ,获得积分10
6秒前
7秒前
jin完成签到,获得积分10
7秒前
马某关注了科研通微信公众号
7秒前
7秒前
蒋蒋发布了新的文献求助10
8秒前
大红马发布了新的文献求助10
9秒前
领导范儿应助paopao采纳,获得10
9秒前
9秒前
10秒前
gjww应助迷路的煎蛋采纳,获得10
10秒前
Hello应助感动清炎采纳,获得10
12秒前
善学以致用应助蒋蒋采纳,获得10
14秒前
15秒前
15秒前
15秒前
弎夜发布了新的文献求助30
15秒前
Malmever发布了新的文献求助10
16秒前
18秒前
Ava应助易楠采纳,获得10
18秒前
一追再追发布了新的文献求助30
21秒前
21秒前
25秒前
marco完成签到 ,获得积分10
25秒前
25秒前
弎夜完成签到,获得积分10
25秒前
25秒前
马某发布了新的文献求助30
27秒前
义气的映萱完成签到 ,获得积分10
27秒前
Ternura发布了新的文献求助10
31秒前
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416546
求助须知:如何正确求助?哪些是违规求助? 3018380
关于积分的说明 8884060
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483862
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 680985