已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data level fusion of acoustic emission sensors using deep learning

声发射 传感器融合 融合 声学 材料科学 计算机科学 人工智能 物理 语言学 哲学
作者
Cheng Lü,Ali Nokhbatolfoghahai,Roger M. Groves,Milan Veljković
出处
期刊:Journal of Intelligent Material Systems and Structures [SAGE]
标识
DOI:10.1177/1045389x241291439
摘要

The acoustic emission (AE) technique is commonly utilized for identifying source mechanisms and material damage. In applications requiring numerous sensors and limited detection areas, achieving significant cost savings, weight reduction, and miniaturization of AE sensors is crucial. This prevents excessive weight burdens on structures while minimizing interference with structural integrity. Thin Piezoelectric Wafer Active Sensors (PWAS), compared to conventional commercially available sensors, offer a miniature, lightweight, and affordable alternative. The low signal-to-noise ratio (SNR) of PWAS sensors and their limited effectiveness in monitoring thick structures result in the decreased reliability of a single classical PWAS sensor for damage detection. This research aims to enhance the functionality of PWAS in AE applications by employing multiple thin PWAS and performing a data-level fusion of their outputs. To achieve this, as a first step, the selection of the optimal PWAS is performed and a configuration is designed for multiple sensors. Pencil break lead (PBL) tests were performed to investigate the compatibility between selected PWAS and traditional WSα and R15α sensors. The responses of all sensors from different AE sources were compared in both the time and frequency domains. After that, convolutional neural networks (CNNs) combined with principal component analysis (PCA) are proposed for signal processing and data fusion. The signals generated by the PBL tests were used for network training and evaluation. This approach, developed by the authors, fuses the signals from multiple PWAS and reconstructs the signals obtained from conventional bulky AE sensors for damage detection. Three CNNs with different architectures were built and tested to optimize the network. It is found that the proposed methodology can effectively reconstruct and identify the PBL signals with high precision. The results demonstrate the feasibility of using a deep-learning-based method for AE monitoring using PWAS for real engineering structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾蓝完成签到,获得积分10
1秒前
mysticwang发布了新的文献求助10
1秒前
高贵的子默完成签到,获得积分20
3秒前
CYL发布了新的文献求助10
4秒前
STOOd关注了科研通微信公众号
5秒前
6秒前
烟消云散发布了新的文献求助10
10秒前
cyzhou发布了新的文献求助10
11秒前
Shulin完成签到 ,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
15秒前
李光驳回了所所应助
15秒前
林贞宝宝完成签到,获得积分20
16秒前
DH完成签到 ,获得积分10
18秒前
慕青应助轻松听双采纳,获得10
18秒前
18秒前
领导范儿应助高点点采纳,获得10
19秒前
19秒前
soild发布了新的文献求助10
20秒前
向日葵发布了新的文献求助10
20秒前
花样年华完成签到,获得积分0
20秒前
22秒前
英俊的铭应助cccy采纳,获得10
23秒前
费费Queen完成签到,获得积分10
23秒前
SSS发布了新的文献求助10
24秒前
24秒前
刘jinkai发布了新的文献求助10
25秒前
28秒前
29秒前
Frank应助秋子采纳,获得150
29秒前
没有答案发布了新的文献求助10
29秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179591
求助须知:如何正确求助?哪些是违规求助? 2830173
关于积分的说明 7975416
捐赠科研通 2491674
什么是DOI,文献DOI怎么找? 1328691
科研通“疑难数据库(出版商)”最低求助积分说明 635515
版权声明 602927