声发射
传感器融合
融合
声学
材料科学
计算机科学
人工智能
物理
语言学
哲学
作者
Cheng Lü,Ali Nokhbatolfoghahai,Roger M. Groves,Milan Veljković
标识
DOI:10.1177/1045389x241291439
摘要
The acoustic emission (AE) technique is commonly utilized for identifying source mechanisms and material damage. In applications requiring numerous sensors and limited detection areas, achieving significant cost savings, weight reduction, and miniaturization of AE sensors is crucial. This prevents excessive weight burdens on structures while minimizing interference with structural integrity. Thin Piezoelectric Wafer Active Sensors (PWAS), compared to conventional commercially available sensors, offer a miniature, lightweight, and affordable alternative. The low signal-to-noise ratio (SNR) of PWAS sensors and their limited effectiveness in monitoring thick structures result in the decreased reliability of a single classical PWAS sensor for damage detection. This research aims to enhance the functionality of PWAS in AE applications by employing multiple thin PWAS and performing a data-level fusion of their outputs. To achieve this, as a first step, the selection of the optimal PWAS is performed and a configuration is designed for multiple sensors. Pencil break lead (PBL) tests were performed to investigate the compatibility between selected PWAS and traditional WSα and R15α sensors. The responses of all sensors from different AE sources were compared in both the time and frequency domains. After that, convolutional neural networks (CNNs) combined with principal component analysis (PCA) are proposed for signal processing and data fusion. The signals generated by the PBL tests were used for network training and evaluation. This approach, developed by the authors, fuses the signals from multiple PWAS and reconstructs the signals obtained from conventional bulky AE sensors for damage detection. Three CNNs with different architectures were built and tested to optimize the network. It is found that the proposed methodology can effectively reconstruct and identify the PBL signals with high precision. The results demonstrate the feasibility of using a deep-learning-based method for AE monitoring using PWAS for real engineering structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI