已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Water Oxidation at the Metal-Free, Phosphorus Acid-Functionalized Graphene Electrocatalytic Interface

石墨烯 电催化剂 金属 无机化学 化学 接口(物质) 材料科学 化学工程 纳米技术 电化学 电极 有机化学 吸附 吉布斯等温线 物理化学 工程类
作者
Vijay S. Sapner,Anandarup Goswami,Xiaoxin Zou,Tewodros Asefa,Bhaskar R. Sathe
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
标识
DOI:10.1021/acssuschemeng.4c05467
摘要

The electrochemical oxygen evolution reaction (OER) is currently one of the key challenges constraining the efficient conversion of electricity into chemical fuels on a large scale. This is because the OER must overcome a high electrochemical overpotential (thermodynamic potential) due to its complexity and the four protons and four electrons it involves. While noble-metal-based electrocatalysts can lower this potential, they are among the rarest metals in the Earth's crust, expensive, and not suitable for sustainable use. Herein, we develop a facile, cost-effective synthetic approach to an inexpensive, metal-free OER electrocatalyst by preparing defective graphene nanosheets and then selectively functionalizing them with phosphorous acid species. The electrocatalytic activity of the resulting metal-free, phosphorus-doped (P-doped) graphene toward OER surpasses those of previously reported metal-free graphene-based electrocatalysts. Notably, the synthesized catalyst requires a lower overpotential to catalyze the reaction, which can be attributed to its increased surface area and reactive defect/active sites associated with the phosphorus dopants present on it. The material also shows excellent stability, maintaining its performance as well as its morphology and structures for hours in an alkaline electrolyte. The present work opens opportunities for the design and synthesis of heteroatom-doped graphene (nanocatalyst) for challenging environmentally benign, energy-related chemical transformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brain完成签到 ,获得积分10
2秒前
FFFFF完成签到 ,获得积分10
5秒前
领导范儿应助wjadejing采纳,获得10
5秒前
烟花应助自然的茉莉采纳,获得10
5秒前
6秒前
8秒前
10秒前
传奇3应助韵寒采纳,获得10
13秒前
14秒前
mbf发布了新的文献求助10
16秒前
16秒前
研友_5Y9Z75完成签到 ,获得积分0
18秒前
19秒前
wjadejing发布了新的文献求助10
26秒前
领导范儿应助容言采纳,获得10
28秒前
WUWUWU应助容言采纳,获得10
28秒前
CodeCraft应助容言采纳,获得10
28秒前
小二郎应助容言采纳,获得10
28秒前
wjadejing完成签到,获得积分10
30秒前
粗犷的灵松完成签到,获得积分10
31秒前
34秒前
科研通AI2S应助mbf采纳,获得10
38秒前
ikress发布了新的文献求助10
40秒前
42秒前
yl发布了新的文献求助10
46秒前
个性雪糕完成签到 ,获得积分10
49秒前
xiuxiuzhang完成签到 ,获得积分10
53秒前
奋斗天德完成签到 ,获得积分10
53秒前
科目三应助无心的行云采纳,获得10
53秒前
咋没人了完成签到 ,获得积分20
57秒前
荔枝多酚发布了新的文献求助10
58秒前
wxg完成签到,获得积分10
58秒前
1分钟前
MANGO完成签到,获得积分10
1分钟前
有川洋一完成签到 ,获得积分10
1分钟前
1分钟前
WUWUWU完成签到,获得积分10
1分钟前
1分钟前
随大溜完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382