Data-driven physics-based modeling of pedestrian dynamics

行人 动力学(音乐) 统计物理学 物理 计算机科学 工程类 运输工程 声学
作者
Caspar A. S. Pouw,Geert G. M. van der Vleuten,Alessandro Corbetta,Federico Toschi
出处
期刊:Physical review 卷期号:110 (6)
标识
DOI:10.1103/physreve.110.064102
摘要

Pedestrian crowds encompass a complex interplay of intentional movements aimed at reaching specific destinations, fluctuations due to personal and interpersonal variability, and interactions with each other and the environment. Previous work demonstrated the effectiveness of Langevin-like equations in capturing the statistical properties of pedestrian dynamics in simple settings, such as almost straight trajectories. However, modeling more complex dynamics, such as when multiple routes and origin destinations are involved, remains a significant challenge. In this work, we introduce a novel and generic framework to describe the dynamics of pedestrians in any geometric setting, significantly extending previous works. Our model is based on Langevin dynamics with two timescales. The fast timescale corresponds to the stochastic fluctuations present when a pedestrian is walking. The slow timescale is associated with the dynamics that a pedestrian plans to follow, thus a smoother path without stochastic fluctuations. Employing a data-driven approach inspired by statistical field theories, we learn the complex potentials directly from the data, namely a high-statistics database of real-life pedestrian trajectories. This approach makes the model generic as the potentials can be read from any trajectory data set and the underlying Langevin structure enables physics-based insights. We validate our model through a comprehensive statistical analysis, comparing simulated trajectories with actual pedestrian measurements across five complementary settings of increasing complexity, including a real-life train platform scenario, underscoring its practical societal relevance. We show that our model, by learning the effective potential, captures fluctuation statistics in the dynamics of individual pedestrians, both in dilute (no interaction with other pedestrians) as well as in dense crowds conditions (in presence of interactions). Our results can be reproduced with our generic open-source Python implementation [Pouw et al. (2024) [Software] doi:10.5281/zenodo.13362271] and validated with the supplemented data set [Pouw et al. (2024) [Dataset] doi:10.5281/zenodo.13784588]. Beyond providing fundamental insights and predictive capabilities in pedestrian dynamics, our model could be used to investigate generic active dynamics such as vehicular traffic and collective animal behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tmobiusx完成签到,获得积分10
刚刚
dddd完成签到 ,获得积分10
2秒前
郑洲完成签到 ,获得积分10
9秒前
wodetaiyangLLL完成签到 ,获得积分10
10秒前
晚街听风完成签到 ,获得积分10
12秒前
cannon8完成签到,获得积分10
20秒前
曹文鹏完成签到 ,获得积分10
26秒前
C_Li完成签到,获得积分10
27秒前
PM2555完成签到 ,获得积分10
29秒前
Tonald Yang发布了新的文献求助10
31秒前
讴歌发布了新的文献求助20
38秒前
Young完成签到 ,获得积分10
39秒前
Dawn完成签到 ,获得积分10
41秒前
乌云乌云快走开完成签到,获得积分10
43秒前
见夏完成签到,获得积分10
45秒前
琉璃完成签到,获得积分10
46秒前
天天快乐应助ttSeven采纳,获得30
47秒前
HTY完成签到 ,获得积分10
48秒前
彩色的冷梅完成签到 ,获得积分10
58秒前
砳熠完成签到 ,获得积分10
1分钟前
小书虫完成签到,获得积分10
1分钟前
强强完成签到,获得积分10
1分钟前
讴歌完成签到,获得积分10
1分钟前
王欣完成签到 ,获得积分10
1分钟前
送你一匹马完成签到 ,获得积分10
1分钟前
xiaochuan完成签到,获得积分10
1分钟前
eyu完成签到,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
小杨完成签到 ,获得积分10
1分钟前
shadow完成签到,获得积分10
1分钟前
1分钟前
研友_nVWP2Z完成签到 ,获得积分10
1分钟前
科研通AI2S应助小书虫采纳,获得10
1分钟前
1分钟前
TT完成签到 ,获得积分10
1分钟前
和谐的啤酒完成签到 ,获得积分10
2分钟前
科研通AI2S应助Sun1c7采纳,获得10
2分钟前
2分钟前
Sun1c7完成签到,获得积分10
2分钟前
小杨完成签到,获得积分10
2分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211244
求助须知:如何正确求助?哪些是违规求助? 2860146
关于积分的说明 8122791
捐赠科研通 2526021
什么是DOI,文献DOI怎么找? 1359706
科研通“疑难数据库(出版商)”最低求助积分说明 643044
邀请新用户注册赠送积分活动 615059