Data-driven physics-based modeling of pedestrian dynamics

行人 动力学(音乐) 人群 弹道 朗之万动力 统计物理学 统计模型 路径(计算) 物理 计算机科学 理论计算机科学 数据科学 机器学习 工程类 运输工程 声学 计算机安全 天文 程序设计语言
作者
Caspar A. S. Pouw,Geert G. M. van der Vleuten,Alessandro Corbetta,Federico Toschi
出处
期刊:Physical review [American Physical Society]
卷期号:110 (6): 064102-064102 被引量:2
标识
DOI:10.1103/physreve.110.064102
摘要

Pedestrian crowds encompass a complex interplay of intentional movements aimed at reaching specific destinations, fluctuations due to personal and interpersonal variability, and interactions with each other and the environment. Previous work demonstrated the effectiveness of Langevin-like equations in capturing the statistical properties of pedestrian dynamics in simple settings, such as almost straight trajectories. However, modeling more complex dynamics, such as when multiple routes and origin destinations are involved, remains a significant challenge. In this work, we introduce a novel and generic framework to describe the dynamics of pedestrians in any geometric setting, significantly extending previous works. Our model is based on Langevin dynamics with two timescales. The fast timescale corresponds to the stochastic fluctuations present when a pedestrian is walking. The slow timescale is associated with the dynamics that a pedestrian plans to follow, thus a smoother path without stochastic fluctuations. Employing a data-driven approach inspired by statistical field theories, we learn the complex potentials directly from the data, namely a high-statistics database of real-life pedestrian trajectories. This approach makes the model generic as the potentials can be read from any trajectory data set and the underlying Langevin structure enables physics-based insights. We validate our model through a comprehensive statistical analysis, comparing simulated trajectories with actual pedestrian measurements across five complementary settings of increasing complexity, including a real-life train platform scenario, underscoring its practical societal relevance. We show that our model, by learning the effective potential, captures fluctuation statistics in the dynamics of individual pedestrians, both in dilute (no interaction with other pedestrians) as well as in dense crowds conditions (in presence of interactions). Our results can be reproduced with our generic open-source Python implementation [Pouw et al. (2024) [Software] doi:10.5281/zenodo.13362271] and validated with the supplemented data set [Pouw et al. (2024) [Dataset] doi:10.5281/zenodo.13784588]. Beyond providing fundamental insights and predictive capabilities in pedestrian dynamics, our model could be used to investigate generic active dynamics such as vehicular traffic and collective animal behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助brian0326采纳,获得10
1秒前
幽默的季节完成签到,获得积分10
1秒前
jam完成签到,获得积分10
1秒前
1秒前
孙总完成签到,获得积分10
3秒前
3秒前
xq发布了新的文献求助10
4秒前
5秒前
顾矜应助幽默的季节采纳,获得10
7秒前
达尔文发布了新的文献求助10
8秒前
9秒前
茫123456完成签到,获得积分10
10秒前
hxb发布了新的文献求助10
10秒前
10秒前
11秒前
HUA完成签到,获得积分10
11秒前
12秒前
Annie应助于鹏采纳,获得10
13秒前
13秒前
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
风清扬发布了新的文献求助10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
star应助科研通管家采纳,获得150
14秒前
Hello应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
ccm应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
胍基发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352