Engineering d‐p Orbital Hybridization in a Single‐Atom‐Based Solid‐State Electrolyte for Lithium‐Metal Batteries

锂(药物) 离子电导率 电解质 离解(化学) 金属 锂原子 电导率 离子键合 密度泛函理论 氧化物 材料科学 化学 无机化学 化学工程 电极 离子 物理化学 计算化学 冶金 工程类 有机化学 电离 内分泌学 医学
作者
Jiadong Shen,Junjie Chen,Xiaosa Xu,Jin Li,Zhenyu Wang,Yu Wang,Pengzhu Lin,Jing Sun,Baoling Huang,Tianshou Zhao
出处
期刊:Angewandte Chemie [Wiley]
卷期号:64 (7): e202419367-e202419367 被引量:9
标识
DOI:10.1002/anie.202419367
摘要

Abstract Regulating lithium salt dissociation kinetics by enhancing the interaction between inorganic fillers and lithium salts is vital for enhancing the ionic conductivity in solid‐state composite polymer electrolytes (CPEs). However, the influence of fillers’ external electronic environments on lithium salt dissociation dynamics remains unclear. Here, we design single‐atom sites in metal–organic framework fillers for poly(ethylene oxide) (PEO)‐based CPEs, boosting lithium salt dissociation through an electrocatalytic strategy. This strategy enhances lithium‐ion conductivity by tuning the coupling strength between the d and p orbitals of the fillers, as captured by a newly identified descriptor ( λ ) via high‐throughput density functional theory (DFT) calculations and machine learning. The optimal single atom (Ti) sites are incorporated into a ZIF‐8 matrix for PEO‐based CPEs, achieving an ionic conductivity exceeding 10 −3 S cm −1 at 30 °C. Additionally, the electrolyte forms a robust solid electrolyte interphase and is compatible with LiCoO 2 , LiNi 0.9 Co 0.05 Mn0.05O 2 , and sulfur cathodes. Consequently, the solid‐state lithium metal battery with the electrolyte demonstrates excellent cycling stability, maintaining performance over 5000 cycles at 10 C with LiFePO4 cathodes and stable operation at −30 °C. These findings highlight the transformative potential of engineering d ‐ p orbital hybridization by incorporating single‐atom sites into inorganic fillers for designing highly ion‐conductive CPEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白板发布了新的文献求助20
刚刚
刚刚
1秒前
1秒前
酷波er应助温柔的戎采纳,获得10
1秒前
Duang完成签到,获得积分20
1秒前
1秒前
柒月发布了新的文献求助10
1秒前
1秒前
朴素友安完成签到 ,获得积分10
1秒前
1秒前
bkagyin应助Linming采纳,获得10
2秒前
饱满的煎饼完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
fff完成签到,获得积分10
4秒前
丘比特应助坚定如南采纳,获得10
5秒前
鲤鱼山人发布了新的文献求助10
5秒前
5秒前
囡囡发布了新的文献求助10
6秒前
2810527600发布了新的文献求助10
6秒前
AWE发布了新的文献求助10
6秒前
jojo144发布了新的文献求助10
6秒前
宋宋发布了新的文献求助10
6秒前
泡泡虾发布了新的文献求助10
7秒前
着急的莫言完成签到,获得积分10
7秒前
甜橙汁发布了新的文献求助10
7秒前
nancylan应助六碳烷采纳,获得10
7秒前
cici发布了新的文献求助10
8秒前
8秒前
AbOO完成签到,获得积分10
8秒前
梧桐完成签到,获得积分10
8秒前
像只猫完成签到,获得积分10
8秒前
珂珂发布了新的文献求助10
8秒前
9秒前
落后的道之完成签到,获得积分10
9秒前
10秒前
王雅发布了新的文献求助10
10秒前
害羞聋五发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887