Engineering d‐p Orbital Hybridization in a Single‐Atom‐Based Solid‐State Electrolyte for Lithium‐Metal Batteries

锂(药物) 离子电导率 电解质 离解(化学) 金属 锂原子 电导率 离子键合 密度泛函理论 氧化物 材料科学 化学 无机化学 化学工程 电极 离子 物理化学 计算化学 冶金 工程类 有机化学 电离 内分泌学 医学
作者
Jiadong Shen,Junjie Chen,Xiaosa Xu,Jin Li,Zhenyu Wang,Yu Wang,Pengzhu Lin,Jing Sun,Baoling Huang,Tianshou Zhao
出处
期刊:Angewandte Chemie [Wiley]
卷期号:64 (7): e202419367-e202419367 被引量:9
标识
DOI:10.1002/anie.202419367
摘要

Abstract Regulating lithium salt dissociation kinetics by enhancing the interaction between inorganic fillers and lithium salts is vital for enhancing the ionic conductivity in solid‐state composite polymer electrolytes (CPEs). However, the influence of fillers’ external electronic environments on lithium salt dissociation dynamics remains unclear. Here, we design single‐atom sites in metal–organic framework fillers for poly(ethylene oxide) (PEO)‐based CPEs, boosting lithium salt dissociation through an electrocatalytic strategy. This strategy enhances lithium‐ion conductivity by tuning the coupling strength between the d and p orbitals of the fillers, as captured by a newly identified descriptor ( λ ) via high‐throughput density functional theory (DFT) calculations and machine learning. The optimal single atom (Ti) sites are incorporated into a ZIF‐8 matrix for PEO‐based CPEs, achieving an ionic conductivity exceeding 10 −3 S cm −1 at 30 °C. Additionally, the electrolyte forms a robust solid electrolyte interphase and is compatible with LiCoO 2 , LiNi 0.9 Co 0.05 Mn0.05O 2 , and sulfur cathodes. Consequently, the solid‐state lithium metal battery with the electrolyte demonstrates excellent cycling stability, maintaining performance over 5000 cycles at 10 C with LiFePO4 cathodes and stable operation at −30 °C. These findings highlight the transformative potential of engineering d ‐ p orbital hybridization by incorporating single‐atom sites into inorganic fillers for designing highly ion‐conductive CPEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研志发布了新的文献求助20
刚刚
1秒前
研友_ndv5j8完成签到,获得积分10
1秒前
苹什么应助白昼の月采纳,获得10
2秒前
3秒前
太空完成签到,获得积分10
3秒前
4秒前
leemiii完成签到 ,获得积分10
5秒前
5秒前
5秒前
纪你巴发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
zhuzhu发布了新的文献求助10
8秒前
刘英岑发布了新的文献求助10
8秒前
kelakola完成签到,获得积分10
9秒前
9秒前
恰逢发布了新的文献求助10
9秒前
科研通AI6应助研友_Lmg01Z采纳,获得10
9秒前
guojingjing发布了新的文献求助10
9秒前
10秒前
赘婿应助monkey采纳,获得10
10秒前
10秒前
科研之家完成签到,获得积分10
11秒前
11秒前
ZZZ完成签到,获得积分10
12秒前
寒霜扬名完成签到 ,获得积分10
12秒前
12秒前
小蘑菇应助王梦秋采纳,获得10
13秒前
酷波er应助小李爱查文献采纳,获得10
14秒前
万能图书馆应助陈陈采纳,获得10
15秒前
perseverance发布了新的文献求助10
15秒前
15秒前
不止夏天发布了新的文献求助10
16秒前
seattle完成签到,获得积分10
16秒前
第七兵团司令完成签到,获得积分10
16秒前
18秒前
谷云应助guojingjing采纳,获得10
18秒前
如如完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812