Adaptive Testing for High-Dimensional Data

数学 检验统计量 学生化范围 估计员 应用数学 统计假设检验 协方差 规范(哲学) 统计 顺序统计量 标准差 政治学 法学
作者
Yangfan Zhang,Runmin Wang,Xiaofeng Shao
标识
DOI:10.1080/01621459.2024.2439617
摘要

In this article, we propose a class of Lq-norm based U-statistics for a family of global testing problems related to high-dimensional data. This includes testing of mean vector and its spatial sign, simultaneous testing of linear model coefficients, and testing of component-wise independence for high-dimensional observations, among others. Under the null hypothesis, we derive asymptotic normality and independence between Lq-norm based U-statistics for several qs under mild moment and cumulant conditions. A simple combination of two studentized Lq-based test statistics via their p-values is proposed and is shown to attain great power against alternatives of different sparsity. Our work is a substantial extension of He et al. (2021), which is mostly focused on mean and covariance testing, and we manage to provide a general treatment of asymptotic independence of Lq-norm based U-statistics for a wide class of kernels. To alleviate the computation burden, we introduce a variant of the proposed U-statistics by using the monotone indices in the summation, resulting in a U-statistic with asymmetric kernel. A dynamic programming method is introduced to reduce the computational cost from O(nqr), which is required for the calculation of the full U-statistic, to O(nr) where r is the order of the kernel. Numerical results further corroborate the advantage of the proposed adaptive test as compared to some existing competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
126发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
Zzz完成签到,获得积分10
2秒前
余叶完成签到 ,获得积分10
2秒前
ABC发布了新的文献求助10
2秒前
大树完成签到,获得积分10
2秒前
乐乐应助小陈爱科研采纳,获得10
3秒前
xj完成签到,获得积分10
3秒前
DAY完成签到,获得积分10
4秒前
樱坠梨殆完成签到,获得积分10
5秒前
大树发布了新的文献求助10
5秒前
我是笨蛋发布了新的文献求助10
5秒前
zy发布了新的文献求助10
5秒前
丁丁丁应助wo采纳,获得10
6秒前
乐乐应助酸奶泡泡采纳,获得10
6秒前
6秒前
敏感静完成签到,获得积分20
7秒前
8秒前
梦鱼完成签到,获得积分10
9秒前
Violet发布了新的文献求助30
10秒前
郑明明完成签到,获得积分10
10秒前
大模型应助兰彻采纳,获得10
11秒前
orixero应助最专业采纳,获得10
11秒前
清茗发布了新的文献求助10
12秒前
今后应助张志迪采纳,获得10
12秒前
传奇3应助ZZ0901采纳,获得10
12秒前
深情安青应助凉茶采纳,获得30
13秒前
独特秋双发布了新的文献求助20
13秒前
obsession完成签到 ,获得积分10
13秒前
14秒前
15秒前
Hydro完成签到,获得积分10
15秒前
princeyxx完成签到,获得积分10
16秒前
BareBear应助cc采纳,获得10
16秒前
16秒前
月光完成签到 ,获得积分10
17秒前
嵇丹雪发布了新的文献求助20
18秒前
恐怖故事完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186