Adaptive Testing for High-Dimensional Data

数学 检验统计量 学生化范围 估计员 应用数学 统计假设检验 协方差 规范(哲学) 统计 顺序统计量 标准差 政治学 法学
作者
Yangfan Zhang,Runmin Wang,Xiaofeng Shao
标识
DOI:10.1080/01621459.2024.2439617
摘要

In this article, we propose a class of Lq-norm based U-statistics for a family of global testing problems related to high-dimensional data. This includes testing of mean vector and its spatial sign, simultaneous testing of linear model coefficients, and testing of component-wise independence for high-dimensional observations, among others. Under the null hypothesis, we derive asymptotic normality and independence between Lq-norm based U-statistics for several qs under mild moment and cumulant conditions. A simple combination of two studentized Lq-based test statistics via their p-values is proposed and is shown to attain great power against alternatives of different sparsity. Our work is a substantial extension of He et al. (2021), which is mostly focused on mean and covariance testing, and we manage to provide a general treatment of asymptotic independence of Lq-norm based U-statistics for a wide class of kernels. To alleviate the computation burden, we introduce a variant of the proposed U-statistics by using the monotone indices in the summation, resulting in a U-statistic with asymmetric kernel. A dynamic programming method is introduced to reduce the computational cost from O(nqr), which is required for the calculation of the full U-statistic, to O(nr) where r is the order of the kernel. Numerical results further corroborate the advantage of the proposed adaptive test as compared to some existing competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助zi采纳,获得10
刚刚
安静曼寒发布了新的文献求助10
1秒前
陈博文发布了新的文献求助10
1秒前
1秒前
科目三应助康康采纳,获得10
1秒前
小虾米发布了新的文献求助10
1秒前
淡定香氛完成签到,获得积分10
1秒前
迷路的晓旋完成签到,获得积分10
2秒前
YDU发布了新的文献求助10
2秒前
充电宝应助EasonChan采纳,获得10
2秒前
zyfan完成签到,获得积分10
4秒前
山复尔尔发布了新的文献求助10
4秒前
研友_ngqjz8发布了新的文献求助30
4秒前
4秒前
自由从阳完成签到,获得积分20
5秒前
无私的芹应助鬼火采纳,获得10
5秒前
隐形曼青应助鬼火采纳,获得10
5秒前
5秒前
5秒前
姜科就叫你完成签到,获得积分10
6秒前
小谢发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
布鲁克完成签到,获得积分10
9秒前
Gin发布了新的文献求助10
9秒前
向北发布了新的文献求助10
9秒前
Han完成签到,获得积分10
11秒前
稳定发挥完成签到,获得积分10
11秒前
12秒前
都好都好好的完成签到,获得积分20
13秒前
小豆豆发布了新的文献求助50
16秒前
16秒前
17秒前
glq完成签到,获得积分20
17秒前
思源应助Gin采纳,获得10
17秒前
小蘑菇应助Hh采纳,获得10
19秒前
zhang完成签到,获得积分20
20秒前
YDU完成签到,获得积分10
20秒前
菠萝蜜发布了新的文献求助10
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350