A Multimodal Biomedical Foundation Model Trained from Fifteen Million Image–Text Pairs

基础(证据) 图像(数学) 计算机科学 人工智能 情报检索 计算机视觉 历史 考古
作者
Sheng Zhang,Yanbo Xu,Naoto Usuyama,Hanwen Xu,Jaspreet Bagga,Robert Tinn,Sam Preston,Rajesh Rao,Mu Wei,Naveen Valluri,Cliff Wong,Andrea Tupini,Yu Wang,Matt Mazzola,Swadheen Shukla,Lars Lidén,Jianfeng Gao,Angela Crabtree,Brian Piening,Carlo Bifulco
标识
DOI:10.1056/aioa2400640
摘要

BackgroundBiomedical data are inherently multimodal, comprising physical measurements and natural-language narratives. A generalist biomedical artificial intelligence (AI) model needs to simultaneously process different modalities of data, including text and images. Therefore, training an effective generalist biomedical model requires high-quality multimodal data, such as parallel image–text pairs.MethodsHere, we present PMC-15M, a novel dataset that is two orders of magnitude larger than existing biomedical multimodal datasets, such as MIMIC-CXR, and spans a diverse range of biomedical image types. PMC-15M contains 15 million biomedical image–text pairs collected from 4.4 million scientific articles. Based on PMC-15M, we have pretrained BiomedCLIP, a multimodal foundation model, with domain-specific adaptations tailored to biomedical vision–language processing.ResultsWe conducted extensive experiments and ablation studies on standard biomedical imaging tasks from retrieval to classification to visual question answering (VQA). BiomedCLIP achieved new state-of-the-art results in a wide range of standard datasets, substantially outperforming prior approaches. Intriguingly, by large-scale pretraining on diverse biomedical image types, BiomedCLIP even outperforms state-of-the-art radiology-specific models, such as BioViL, in radiology-specific tasks such as Radiological Society of North America (RSNA) pneumonia detection.ConclusionsBiomedCLIP is a fully open-access foundation model that achieves state-of-the-art performance on various biomedical tasks, paving the way for transformative multimodal biomedical discovery and applications. We release our models at aka.ms/biomedclip to facilitate future research in multimodal biomedical AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
教授王发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Orange应助jue采纳,获得10
2秒前
XuLeng完成签到,获得积分20
2秒前
大帅哥发布了新的文献求助20
3秒前
Serein发布了新的文献求助20
3秒前
Anar发布了新的文献求助10
5秒前
庄周发布了新的文献求助10
6秒前
Orange应助XuLeng采纳,获得30
6秒前
情怀应助777采纳,获得10
6秒前
科研通AI2S应助千手柱间采纳,获得10
8秒前
心灵美傲薇完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
自觉的秋蝶完成签到,获得积分10
10秒前
大白白完成签到,获得积分10
10秒前
酷酷的麦片完成签到 ,获得积分10
11秒前
bohanhan完成签到 ,获得积分10
12秒前
所所应助郑石采纳,获得10
12秒前
科研通AI5应助明理的问柳采纳,获得10
14秒前
14秒前
15秒前
16秒前
16秒前
zk发布了新的文献求助10
19秒前
星辰大海应助Anar采纳,获得10
19秒前
19秒前
21秒前
充电宝应助搁浅采纳,获得10
21秒前
尉迟希望应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
22秒前
田様应助静待花开采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096784
求助须知:如何正确求助?哪些是违规求助? 4309396
关于积分的说明 13426966
捐赠科研通 4136717
什么是DOI,文献DOI怎么找? 2266298
邀请新用户注册赠送积分活动 1269457
关于科研通互助平台的介绍 1205723