Identifying biomarkers associated with the diagnosis of ulcerative colitis via bioinformatics and machine learning

免疫系统 接收机工作特性 溃疡性结肠炎 细胞因子 CD8型 基因本体论 小桶 肿瘤坏死因子α 炎症 基因 免疫学 生物 医学 疾病 基因表达 内科学 遗传学
作者
Yuedan Wang,Jinke Huang,Jiaqi Zhang,Fengyun Wang,Xudong Tang
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:20 (6): 10741-10756 被引量:2
标识
DOI:10.3934/mbe.2023476
摘要

Ulcerative colitis (UC) is an idiopathic inflammatory disease with an increasing incidence. This study aimed to identify potential UC biomarkers and associated immune infiltration characteristics.Two datasets (GSE87473 and GSE92415) were merged to obtain 193 UC samples and 42 normal samples. Using R, differentially expressed genes (DEGs) between UC and normal samples were filtered out, and their biological functions were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Promising biomarkers were identified using least absolute shrinkage selector operator regression and support vector machine recursive feature elimination, and their diagnostic efficacy was evaluated through receiver operating characteristic (ROC) curves. Finally, CIBERSORT was used to investigate the immune infiltration characteristics in UC, and the relationship between the identified biomarkers and various immune cells was examined.We found 102 DEGs, of which 64 were significantly upregulated, and 38 were significantly downregulated. The DEGs were enriched in pathways associated with interleukin-17, cytokine-cytokine receptor interaction and viral protein interactions with cytokines and cytokine receptors, among others. Using machine learning methods and ROC tests, we confirmed DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1 to be essential diagnostic genes for UC. Immune cell infiltration analysis revealed that all five diagnostic genes were correlated with regulatory T cells, CD8 T cells, activated and resting memory CD4 T cells, activated natural killer cells, neutrophils, activated and resting mast cells, activated and resting dendritic cells and M0, M1 and M2 macrophages.DUOX2, DMBT1, CYP2B7P, PITX2 and DEFB1 were identified as prospective biomarkers for UC. A new perspective on understanding the progression of UC may be provided by these biomarkers and their relationship with immune cell infiltration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WWW发布了新的文献求助30
刚刚
1秒前
遇见胡桃夹子完成签到,获得积分10
1秒前
宋牛奶的猫关注了科研通微信公众号
1秒前
胖头锦鲤发布了新的文献求助10
1秒前
hanqun1111完成签到,获得积分10
1秒前
vlots应助CreaJOE采纳,获得30
1秒前
慕青应助游悠悠采纳,获得10
1秒前
星辰大海应助vegetable采纳,获得10
2秒前
科研通AI6应助DORAAA采纳,获得10
2秒前
3秒前
jyh发布了新的文献求助10
3秒前
浮游应助guihai采纳,获得10
4秒前
大气伯云发布了新的文献求助10
6秒前
lw发布了新的文献求助10
8秒前
8秒前
思源应助淡定蜗牛采纳,获得10
9秒前
脑洞疼应助睡不醒的xx采纳,获得10
9秒前
科研通AI6应助yyy采纳,获得30
10秒前
阿氏之光完成签到,获得积分10
10秒前
单薄黑米发布了新的文献求助30
11秒前
游悠悠发布了新的文献求助10
11秒前
花影移完成签到,获得积分10
11秒前
无极微光应助ZZZ采纳,获得20
12秒前
14秒前
有志不在年糕完成签到,获得积分10
15秒前
老北京发布了新的文献求助10
16秒前
lw完成签到,获得积分20
17秒前
morlison完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
文静冷梅完成签到,获得积分10
20秒前
20秒前
帅玉玉发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997