Development of machine learning models to enhance element-doped g-C3N4 photocatalyst for hydrogen production through splitting water

制氢 石墨氮化碳 光催化 兴奋剂 材料科学 生产(经济) 分解水 计算机科学 表征(材料科学) 催化作用 纳米技术 生物系统 化学 光电子学 生物化学 有机化学 生物 经济 宏观经济学
作者
Liqing Yan,Shifa Zhong,Thomas Igou,Haiping Gao,Jing Li,Yongsheng Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:47 (80): 34075-34089 被引量:25
标识
DOI:10.1016/j.ijhydene.2022.08.013
摘要

Elemental doping has been widely adopted to enhance the photoactivity of graphitic carbon nitride (g-C3N4). Correlating photocatalytic performance with experimental conditions could improve upon the current trial-and-error paradigm, but it remains a formidable challenge. In this study, we have developed machine learning (ML) models to link experimental parameters with hydrogen (H2) production rate over element-doped graphitic carbon nitride (D-g-C3N4). Material synthesis parameters, material properties, and H2 production conditions are fed to the ML models, and the H2 production rate is derived as the output. The trained ML models are effective in predicting the H2 production rate using experimental data, as demonstrated by a satisfactory correlation coefficient for the test data. Sensitivity analysis is performed on input features to elucidate the ambiguous relationship between H2 production rate and experimental conditions. The ML model can not only identify important features that are well-recognized and widely investigated in the literature, which supports the efficacy of the developed models but also reveals insights on less explored parameters that might also demonstrate significant impacts on photocatalytic performance. The method described in the present study provides valuable insights for the design of elemental doping strategies for g-C3N4 to improve the H2 production rate without conducting time-consuming and expensive experiments. Our models may be used to revolutionize future catalyst design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Green完成签到,获得积分10
刚刚
q792309106发布了新的文献求助10
刚刚
1秒前
1秒前
最佳发布了新的文献求助10
2秒前
2秒前
JaneChen发布了新的文献求助10
3秒前
3秒前
bofu发布了新的文献求助10
3秒前
付榆峰发布了新的文献求助10
3秒前
lalala发布了新的文献求助10
4秒前
di关闭了di文献求助
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
water应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
water应助科研通管家采纳,获得10
5秒前
ll应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得30
5秒前
7秒前
jyyg发布了新的文献求助10
7秒前
7秒前
8秒前
小DRA完成签到,获得积分10
8秒前
9秒前
9秒前
chen发布了新的文献求助10
9秒前
bofu发布了新的文献求助10
9秒前
di关闭了di文献求助
9秒前
ZZ发布了新的文献求助10
10秒前
等待的秋双完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
博修发布了新的文献求助10
12秒前
wanci应助达助采纳,获得10
13秒前
小马甲应助水色采纳,获得10
13秒前
小DRA发布了新的文献求助10
13秒前
di关闭了di文献求助
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163