Development of machine learning models to enhance element-doped g-C3N4 photocatalyst for hydrogen production through splitting water

制氢 石墨氮化碳 光催化 兴奋剂 材料科学 生产(经济) 分解水 计算机科学 表征(材料科学) 催化作用 纳米技术 生物系统 化学 光电子学 生物化学 有机化学 生物 经济 宏观经济学
作者
Liqing Yan,Shifa Zhong,Thomas Igou,Haiping Gao,Jing Li,Yongsheng Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (80): 34075-34089 被引量:15
标识
DOI:10.1016/j.ijhydene.2022.08.013
摘要

Elemental doping has been widely adopted to enhance the photoactivity of graphitic carbon nitride (g-C3N4). Correlating photocatalytic performance with experimental conditions could improve upon the current trial-and-error paradigm, but it remains a formidable challenge. In this study, we have developed machine learning (ML) models to link experimental parameters with hydrogen (H2) production rate over element-doped graphitic carbon nitride (D-g-C3N4). Material synthesis parameters, material properties, and H2 production conditions are fed to the ML models, and the H2 production rate is derived as the output. The trained ML models are effective in predicting the H2 production rate using experimental data, as demonstrated by a satisfactory correlation coefficient for the test data. Sensitivity analysis is performed on input features to elucidate the ambiguous relationship between H2 production rate and experimental conditions. The ML model can not only identify important features that are well-recognized and widely investigated in the literature, which supports the efficacy of the developed models but also reveals insights on less explored parameters that might also demonstrate significant impacts on photocatalytic performance. The method described in the present study provides valuable insights for the design of elemental doping strategies for g-C3N4 to improve the H2 production rate without conducting time-consuming and expensive experiments. Our models may be used to revolutionize future catalyst design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助haoyunchangz采纳,获得20
1秒前
华仔应助明镜止水z采纳,获得10
1秒前
丘比特应助朱湋帆采纳,获得10
1秒前
hyde发布了新的文献求助10
1秒前
2秒前
踏实的傲白完成签到 ,获得积分10
2秒前
小巧念露完成签到,获得积分10
2秒前
S杨发布了新的文献求助10
2秒前
另类发布了新的文献求助10
3秒前
寒食应助顺心化蛹采纳,获得30
3秒前
小猪发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助Lucky采纳,获得10
6秒前
aaabbb完成签到,获得积分20
7秒前
haobhaobhaob完成签到,获得积分10
7秒前
wcj发布了新的文献求助10
8秒前
王不留行完成签到,获得积分10
8秒前
jks发布了新的文献求助10
10秒前
10秒前
传奇3应助S杨采纳,获得10
10秒前
zsc668完成签到,获得积分10
11秒前
leolee完成签到 ,获得积分10
11秒前
13秒前
16秒前
赘婿应助邱海华采纳,获得10
16秒前
xiao5424liu完成签到 ,获得积分20
16秒前
不配.应助罗罗的足球师傅采纳,获得30
17秒前
20秒前
20秒前
20秒前
21秒前
吃猫的鱼发布了新的文献求助10
21秒前
科目三应助洪山老狗采纳,获得30
21秒前
dawnfrf应助顺心化蛹采纳,获得30
22秒前
平平无奇发布了新的文献求助10
24秒前
25秒前
碗碗发布了新的文献求助10
26秒前
26秒前
27秒前
接accept发布了新的文献求助10
27秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271179
求助须知:如何正确求助?哪些是违规求助? 2910384
关于积分的说明 8354153
捐赠科研通 2580893
什么是DOI,文献DOI怎么找? 1403872
科研通“疑难数据库(出版商)”最低求助积分说明 656013
邀请新用户注册赠送积分活动 635418