Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions

序列(生物学) 期限(时间) 能量(信号处理) 计算机科学 工程类 物理 数学 生物 统计 遗传学 量子力学
作者
Guannan Li,Fan Li,Tanveer Ahmad,Jiangyan Liu,Li Tao,Xi Fang,Yubei Wu
出处
期刊:Energy [Elsevier BV]
卷期号:259: 124915-124915 被引量:2
标识
DOI:10.1016/j.energy.2022.124915
摘要

Traditional building energy prediction(BEP) methods usually solve time-series prediction problems using either recursive strategy or direct strategy, which may ignore time-dependence between continuous building energy data in building energy systems. To overcome this issue, a sequence-to-sequence(Seq2seq) model combined with attention mechanism(Seq2seq-Att) is developed to realize multi-step ahead BEP. Compared with the original Seq2seq, both parameter-tuning and attention mechanism in the Seq2seq-Att model have great impacts on BEP performance improvement. To obtain quantitative analyses of performance improvement of these two aspects, this study conducted a comprehensive performance evaluation of four Seq2seq models (i.e., before and after parameter-tuning, adding attention and without attention). In this study, the length of sliding window is 24-h and prediction time steps ranges from 1-h to 12-h ahead. From the open-source Building Data Genome Project 2 , 36 buildings are selected. Results indicate that adding attention to Seq2seq together with parameter-tuning, the multi-step ahead prediction performance can be increased by 8%(parameter-tuning around 6% while adding attention about 2%) on average. For prediction time step less than 3-h, parameter-tuning is a convenient way to improve the Seq2seq-based multi-step ahead BEP model. But for cases of prediction time step over 3-h, combining attention to the Seq2seq after parameter-tuning is recommended. • Evaluate Seq2seq and Attention on 36 buildings for multi-step short-term energy predictions. • Enhance Seq2seq multi-step prediction R 2 averagely by 8% (attention 2%, parameter-tuning 6%). • arameter-tuning is enough to enhance Seq2seq multi-step prediction for time-step<3-h ahead. • Recommend adding attention to Seq2seq after parameter-tuning for time-step>3-h ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DW发布了新的文献求助10
1秒前
1秒前
自然完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
nothing完成签到,获得积分20
4秒前
斯文败类应助chyu1057采纳,获得10
4秒前
勤恳擎宇发布了新的文献求助10
5秒前
Owen应助温暖芸采纳,获得10
5秒前
Jane发布了新的文献求助10
5秒前
丘比特应助秀丽的正豪采纳,获得10
5秒前
星辰大海应助安一采纳,获得10
6秒前
mao应助个性芹菜采纳,获得10
7秒前
执着诺言发布了新的文献求助10
8秒前
刻苦的溪流完成签到,获得积分10
10秒前
直率溪灵完成签到,获得积分10
10秒前
10秒前
英俊的铭应助tian采纳,获得10
13秒前
13秒前
gjhhh完成签到 ,获得积分10
15秒前
16秒前
composite66完成签到,获得积分10
18秒前
gjhhh关注了科研通微信公众号
19秒前
chyu1057完成签到,获得积分10
19秒前
21秒前
科研通AI5应助DW采纳,获得10
21秒前
22秒前
chyu1057发布了新的文献求助10
22秒前
情怀应助落寞小蘑菇采纳,获得10
23秒前
Singularity应助贺嗣杰采纳,获得10
23秒前
草莓完成签到,获得积分10
24秒前
想上985完成签到 ,获得积分10
25秒前
叶楠完成签到,获得积分10
25秒前
阳光沛凝发布了新的文献求助10
26秒前
26秒前
恒星完成签到 ,获得积分10
27秒前
迷路的小蚂蚁完成签到,获得积分10
29秒前
DQY发布了新的文献求助10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783737
求助须知:如何正确求助?哪些是违规求助? 3328914
关于积分的说明 10239295
捐赠科研通 3044388
什么是DOI,文献DOI怎么找? 1670975
邀请新用户注册赠送积分活动 799997
科研通“疑难数据库(出版商)”最低求助积分说明 759172