脚手架
自愈水凝胶
组织工程
生物医学工程
材料科学
再生(生物学)
骨骼肌
应力松弛
3D生物打印
粘弹性
再生医学
生物物理学
化学
细胞
解剖
细胞生物学
复合材料
蠕动
高分子化学
生物化学
生物
医学
作者
Ting Li,Juedong Hou,Ling Wang,Guanjie Zeng,Zihan Wang,Liu Yu,Qiao Yang,Junfeiyang Yin,Meng Long,Lizhi Chen,Siyuan Chen,Hongwu Zhang,Yanbing Li,Yaobin Wu,Wenhua Huang
标识
DOI:10.1016/j.actbio.2022.08.037
摘要
Viscoelastic hydrogels can enhance 3D cell migration and proliferation due to the faster stress relaxation promoting the arrangement of the cellular microenvironment. However, most synthetic photocurable hydrogels used as bioink materials for 3D bioprinting are typically elastic. Developing a photocurable hydrogel bioink with fast stress relaxation would be beneficial for 3D bioprinting engineered 3D skeletal muscles in vitro and repairing volumetric muscle loss (VML) in vivo; however, this remains an ongoing challenge. This study aims to develop an interpenetrating network (IPN) hydrogel with tunable stress relaxation using a combination of gelatin methacryloyl (GelMA) and fibrinogen. These IPN hydrogels with faster stress relaxation showed higher 3D cellular proliferation and better differentiation. A 3D anisotropic biomimetic scaffold was further developed via a printing gel-in-gel strategy, where the extrusion printing of cell-laden viscoelastic FG hydrogel within Carbopol supported gel. The 3D engineered skeletal muscle tissue was further developed via 3D aligned myotube formation and contraction. Furthermore, the cell-free 3D printed scaffold was implanted into a rat VML model, and both the short and long-term repair results demonstrated its ability to enhance functional skeletal muscle tissue regeneration. These data suggest that such viscoelastic hydrogel provided a suitable 3D microenvironment for enhancing 3D myogenic differentiation, and the 3D bioprinted anisotropic structure provided a 3D macroenvironment for myotube organization, which indicated the potential in skeletal muscle engineering and VML regeneration. The development of a viscoelastic 3D aligned biomimetic skeletal muscle scaffold has been focused on skeletal muscle regeneration. However, a credible technique combining viscoelastic hydrogel and printing gel-in-gel strategy for fabricating skeletal muscle tissue was rarely reported. Therefore, in this study, we present an interpenetrating network (IPN) hydrogel with fast stress relaxation for 3D bioprinting engineered skeletal muscle via a printing gel-in-gel strategy. Such IPN hydrogels with tunable fast stress relaxation resulted in high 3D cellular proliferation and adequate differentiation in vitro. Besides, the 3D hydrogel-based scaffolds also enhance functional skeletal muscle regeneration in situ. We believe that this study provides several notable advances in tissue engineering that can be potentially used for skeletal muscle injury treatment in clinical.
科研通智能强力驱动
Strongly Powered by AbleSci AI