Sequential air pollution emission estimation using a hybrid deep learning model and health-related ventilation control in a pig building

通风(建筑) 硫化氢 环境科学 污染 空气污染 二氧化碳 室内空气质量 估计 空气质量指数 环境工程 气象学 化学 工程类 地理 生态学 硫黄 系统工程 有机化学 生物
作者
Qing Xie,Ji‐Qin Ni,Enlin Li,Jun Bao,Ping Zheng
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:371: 133714-133714 被引量:5
标识
DOI:10.1016/j.jclepro.2022.133714
摘要

Ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) are predominant gases that are responsible for indoor air quality and air pollution emitted from pig buildings. They are critical for the health of pigs, farm workers, and people living nearby. To achieve an accurate estimation of gas emissions, firstly, hybrid deep learning driven sequential Concentration Transport Emission Model (DL-CTEM) was proposed to estimate the emissions of NH3, CO2, and H2S from a pig building. Then, optimal ventilation control strategies were put forward to improve health-related gas concentrations and air pollution from the pig building. Fifty-three days of hourly measurements data were divided into training data and test data for the DL-CTEM. It was shown that the mean errors between the measurements and the predictions of the proposed model for NH3, CO2, and H2S concentrations were 0.1 ppm, 79.2 ppm, and 106.3 ppb, respectively. The proposed model outperformed when it was built with an optimal structure in the long short-term memory (LSTM) layer. The mean emission rates of NH3, CO2, and H2S based on DL-CTEM were 4.2 mg min−1, 2887.5 mg min−1, and 2.1 μg min−1. It could provide a feasible way for air pollution emission estimation and health-related ventilation control in a pig building.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心香烟完成签到 ,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
不懈奋进应助科研通管家采纳,获得30
1秒前
嗯哼应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Raymond应助科研通管家采纳,获得10
2秒前
南国应助科研通管家采纳,获得10
2秒前
chaotianjiao完成签到 ,获得积分10
2秒前
2秒前
Raymond应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
快乐应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
2秒前
ding应助科研通管家采纳,获得10
2秒前
oceanao应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得30
2秒前
3秒前
尔晚完成签到,获得积分10
3秒前
随机子应助keyanzhang采纳,获得10
4秒前
7lanxiong完成签到,获得积分10
5秒前
Chen272完成签到,获得积分10
6秒前
cc小木屋应助尔晚采纳,获得10
8秒前
聪慧的南风完成签到 ,获得积分10
8秒前
猪猪hero完成签到,获得积分10
9秒前
10秒前
11秒前
郑思榆完成签到 ,获得积分10
12秒前
端庄代荷完成签到 ,获得积分10
12秒前
蓝莓果完成签到,获得积分10
13秒前
fsf完成签到,获得积分10
14秒前
by发布了新的文献求助10
15秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388