Identification of Neurodegenerative Diseases From Gait Rhythm Through Time Domain and Time-Dependent Spectral Descriptors

人工智能 跨步 模式识别(心理学) 计算机科学 二元分类 亨廷顿病 步态 分类器(UML) 支持向量机 节奏 肌萎缩侧索硬化 时域 机器学习 物理医学与康复 疾病 医学 计算机视觉 内科学 病理 计算机安全
作者
Alessandro Mengarelli,Andrea Tigrini,Sandro Fioretti,Federica Verdini
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 5974-5982 被引量:18
标识
DOI:10.1109/jbhi.2022.3205058
摘要

The analysis of gait rhythm by pattern recognition can support the state-of-the-art clinical methods for the identification of neurodegenerative diseases (NDD). In this study, we investigated the use of time domain (TD) and time-dependent spectral features (PSDTD) for detecting NDD sub-types. Also, we proposed two classification pathways for supporting NDD diagnosis, the first one made by a two-step learning phase, whereas the second one encompasses a single learning model. We considered stride-to-stride fluctuation data of healthy controls (CN), patients affected by Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (AS). TD feature set provided good results to distinguish between CN and NDDs, while performances lowered for specific NDD identification. PSDTD features boosted the accuracy of each binary identification task. With k-nearest neighbor classifier, the first diagnosis pathway reached 98.76% accuracy to distinguish between CN and NDD and 94.56% accuracy for NDDs sub-types, whereas the second pathway offered an overall accuracy of 94.84% for a 4-class classification task. Outcomes of this study indicate that the use of TD and PSDTD features, simple to extract and with a low computational load, provides reliable results in terms of NDD identification, being also useful for the development of gait rhythm computer-aided NDD detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
云深不知处完成签到,获得积分10
2秒前
3秒前
慕青应助泽锦臻采纳,获得10
7秒前
Sandy发布了新的文献求助30
8秒前
斯文败类应助schrodinger采纳,获得10
9秒前
uouuo完成签到 ,获得积分10
10秒前
siriuslee99完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
15秒前
17秒前
大个应助张文静采纳,获得10
17秒前
聪慧的鸣凤完成签到,获得积分10
17秒前
欣慰电脑发布了新的文献求助10
17秒前
sssss发布了新的文献求助10
17秒前
泽锦臻发布了新的文献求助10
20秒前
Maria完成签到,获得积分10
23秒前
24秒前
27秒前
天一完成签到,获得积分10
29秒前
冷锋面发布了新的文献求助10
29秒前
领导范儿应助小情绪采纳,获得10
30秒前
31秒前
万能图书馆应助lixin采纳,获得10
32秒前
张文静发布了新的文献求助10
33秒前
连夜雪完成签到,获得积分10
34秒前
34秒前
34秒前
沉默的板凳完成签到,获得积分20
39秒前
42秒前
无花果应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
布溜应助科研通管家采纳,获得10
42秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
蓝天应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得30
43秒前
隐形曼青应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560555
求助须知:如何正确求助?哪些是违规求助? 4645805
关于积分的说明 14676221
捐赠科研通 4586997
什么是DOI,文献DOI怎么找? 2516667
邀请新用户注册赠送积分活动 1490212
关于科研通互助平台的介绍 1461088