Identification of Neurodegenerative Diseases From Gait Rhythm Through Time Domain and Time-Dependent Spectral Descriptors

人工智能 跨步 模式识别(心理学) 计算机科学 二元分类 亨廷顿病 步态 分类器(UML) 支持向量机 节奏 肌萎缩侧索硬化 时域 机器学习 物理医学与康复 疾病 医学 计算机视觉 内科学 病理 计算机安全
作者
Alessandro Mengarelli,Andrea Tigrini,Sandro Fioretti,Federica Verdini
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 5974-5982 被引量:18
标识
DOI:10.1109/jbhi.2022.3205058
摘要

The analysis of gait rhythm by pattern recognition can support the state-of-the-art clinical methods for the identification of neurodegenerative diseases (NDD). In this study, we investigated the use of time domain (TD) and time-dependent spectral features (PSDTD) for detecting NDD sub-types. Also, we proposed two classification pathways for supporting NDD diagnosis, the first one made by a two-step learning phase, whereas the second one encompasses a single learning model. We considered stride-to-stride fluctuation data of healthy controls (CN), patients affected by Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (AS). TD feature set provided good results to distinguish between CN and NDDs, while performances lowered for specific NDD identification. PSDTD features boosted the accuracy of each binary identification task. With k-nearest neighbor classifier, the first diagnosis pathway reached 98.76% accuracy to distinguish between CN and NDD and 94.56% accuracy for NDDs sub-types, whereas the second pathway offered an overall accuracy of 94.84% for a 4-class classification task. Outcomes of this study indicate that the use of TD and PSDTD features, simple to extract and with a low computational load, provides reliable results in terms of NDD identification, being also useful for the development of gait rhythm computer-aided NDD detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
望江饮月发布了新的文献求助10
2秒前
ZBY0216完成签到,获得积分10
3秒前
乐观的雨完成签到,获得积分10
3秒前
三物完成签到 ,获得积分10
3秒前
5秒前
wzswzs发布了新的文献求助10
6秒前
彩色的荔枝完成签到 ,获得积分10
6秒前
枯茗完成签到,获得积分10
7秒前
华仔应助南星采纳,获得10
7秒前
百无禁忌应助狂野的山雁采纳,获得10
7秒前
8秒前
孙成成发布了新的文献求助30
9秒前
研友_VZG7GZ应助jerry采纳,获得10
10秒前
东华帝君完成签到,获得积分10
12秒前
wzswzs完成签到,获得积分10
13秒前
13秒前
ooooo发布了新的文献求助10
13秒前
13秒前
dodo发布了新的文献求助10
13秒前
YH应助凯云采纳,获得50
14秒前
乐乐应助Zirong采纳,获得10
14秒前
李尚泽完成签到,获得积分10
16秒前
菓小柒完成签到 ,获得积分10
17秒前
ding应助LX采纳,获得10
17秒前
机智的龙猫完成签到,获得积分10
17秒前
bkagyin应助别偷我增肌粉采纳,获得10
17秒前
NEUROVASCULAR发布了新的文献求助10
18秒前
18秒前
long完成签到 ,获得积分10
20秒前
Gideon完成签到,获得积分10
20秒前
laoli2022完成签到,获得积分10
20秒前
南星完成签到,获得积分10
21秒前
桐桐应助Lydia采纳,获得10
22秒前
碧蓝香水完成签到,获得积分10
22秒前
22秒前
共享精神应助勋xxx采纳,获得10
23秒前
南星发布了新的文献求助10
24秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150