热液循环
煅烧
氮氧化物
催化作用
氨
化学
选择性催化还原
水热合成
化学工程
无机化学
物理化学
有机化学
燃烧
工程类
作者
Xin Yong,Yongdan Li,Shetian Liu,Hong Chen,Cuijuan Zhang
标识
DOI:10.1016/j.cattod.2022.08.031
摘要
The high temperature hydrothermal stability in the presence of SO2 of the one-pot synthesized Cu-SSZ-13 was investigated for selective catalytic reduction of NOx by NH3 (NH3-SCR). The uncalcined samples were treated with HNO3 (pH = 1.0–1.1) with different duration (3, 6, and 9 h) and then calcined, finally subjected to 750 oC hydrothermal aging without/with the presence of SO2. Various characterization results indicate that different duration of HNO3 treatment results in dealumination but has almost no effect on the distribution of Al and Si species. In contrast, it leads to difference in the content of Cu species and finally in their distribution. The 6 and 9 h samples contain higher content of more stable Cu species, which contribute to the high hydrothermal stability in the presence of SO2. H2-temperature programmed reduction (H2-TPR) is a powerful technique to reveal the properties of Cu-SSZ-13; the reduction behavior at lower temperatures (Cu2+ → Cu+) determines the NH3-SCR activity whilst the case at higher temperatures (Cu+ → Cu0) determines the high-temperature hydrothermal stability in the presence of SO2. This work demonstrates that the hydrothermal stability of Cu-SSZ-13 in the presence of SO2 can be tuned by engineering the distribution of Cu species via post HNO3 treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI