Flow Regime Identification in Gas-Liquid Two-Phase Flow in Horizontal Pipe by Deep Learning

流量(数学) 卷积神经网络 两相流 多相流 计算机科学 流体体积法 管道运输 人工智能 机械 模拟 工程类 机械工程 物理
作者
Umair Khan,William Pao,Nabihah Sallih,Farrukh Hassan
出处
期刊:Journal of Advanced Research in Applied Sciences and Engineering Technology [Akademia Baru Publishing]
卷期号:27 (1): 86-91 被引量:20
标识
DOI:10.37934/araset.27.1.8691
摘要

Two phase flow commonly occurs in industrial pipelines, heat exchangers and nuclear power plants. A characteristic feature of two-phase flow is that it can acquire various spatial distribution of phases to form different flow patterns/regimes. The first step to successfully design, analyze, and operate gas-liquid system is flow regime identification. Flow regime identification is of huge importance to the effective operation of facilities for the handling and transportation of multiphase fluids, and it represents one of the most significant challenges in petrochemical and thermonuclear industries today. The objective of this study is to develop a methodology for identification of flow regime using dynamic pressure signals and deep learning techniques. Three different flow regimes were simulated using a Level-Set (LS) method coupled with Volume of Fluid (VOF) method in a 6 m horizontal pipe with 0.050 m inner diameter. Dynamic pressure readings were collected at a strategic location and were converted to scalograms to be used as inputs in deep learning architectures like ResNet-50 and ShuffleNet. Both architectures performed effectively in classifying different flow regime and recorded testing accuracies of 85.7% and 82.9% respectively. According to our knowledge no similar research has been reported in literature, where various Convolutional Neural Networks are used along with dynamic pressure signals to identify flow regime in horizontal pipe.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cookie完成签到,获得积分10
1秒前
万能图书馆应助罗拉采纳,获得10
2秒前
科目三应助hongshiyi采纳,获得10
2秒前
2秒前
fbsnbgfn完成签到,获得积分10
2秒前
2010发布了新的文献求助10
2秒前
Studying发布了新的文献求助10
3秒前
3秒前
3秒前
和谐的修洁完成签到,获得积分10
4秒前
传奇3应助忘川采纳,获得10
5秒前
5秒前
大模型应助John采纳,获得10
6秒前
junio完成签到 ,获得积分10
7秒前
赵旭东完成签到,获得积分20
7秒前
8秒前
唐帅发布了新的文献求助10
8秒前
abjz完成签到,获得积分10
8秒前
断棍豪斯完成签到,获得积分10
9秒前
邹万恶发布了新的文献求助10
9秒前
调皮汽车完成签到 ,获得积分10
9秒前
Superg发布了新的文献求助30
10秒前
赵旭东发布了新的文献求助10
11秒前
研友_842M4n完成签到,获得积分10
11秒前
雪飞杨完成签到 ,获得积分10
12秒前
FashionBoy应助科研小白采纳,获得10
12秒前
orixero应助yy爱科研采纳,获得10
12秒前
HC发布了新的文献求助10
15秒前
华仔应助懵懂的凝丹采纳,获得10
15秒前
17秒前
21秒前
22秒前
22秒前
23秒前
23秒前
23秒前
JamesPei应助伶俐绿柏采纳,获得10
24秒前
Zzzzzzzz完成签到,获得积分10
24秒前
晓东完成签到,获得积分10
25秒前
懵懂的凝丹完成签到 ,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299726
求助须知:如何正确求助?哪些是违规求助? 2934627
关于积分的说明 8469883
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424065
科研通“疑难数据库(出版商)”最低求助积分说明 661818
邀请新用户注册赠送积分活动 645574