Mechanical strength and band alignment of BAs/GaN heterojunction polar interfaces: A first-principles calculation study

材料科学 异质结 超晶格 光电子学 波段图 半导体 偶极子 钻石 宽禁带半导体 凝聚态物理 复合材料 物理 化学 有机化学
作者
Yuxi He,Hong Sun
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (3) 被引量:11
标识
DOI:10.1103/physrevmaterials.6.034603
摘要

Recently, GaN-on-BAs has been synthesized and demonstrated as a promising architecture for efficient thermal management in GaN based high-power electronic devices with remarkably reduced thermal boundary resistance compared to that of GaN-on-diamond. In this paper, we report studies on ideal strengths and band alignments for polar BAs/GaN heterojunctions and superlattices using first-principles calculations. The results show that under normal compression, all BAs/GaN interface configurations show much higher compressive stiffness compared to that in bulk GaN [0001] direction, with the GaN softening during its structural transformation under compression markedly suppressed, which improves protection of the electronic properties under external impacts. The natural band alignments of the mismatched BAs/GaN heterojunctions are calculated by a three-step approach. Most of the heterojunction and all the superlattice interfaces show type-II staggered band offsets. Large polarization built-in electric fields are predicated in superlattice with repeatedly positive- and negative-charged N-As and Ga-B interfaces, producing a saw-tooth like dipole potential, which can effectively separate electrons and holes to different interfaces, desirable for the photocatalytic processes. Our research shows that BAs/GaN heterojunction can not only provide a much-needed alternative to GaN-on-diamond heat dissipation system in future designing of high-power electronic devices, but also offers possibilities of applications in photovoltaic and photocatalytic devices as a type-II semiconductor heterojunction or superlattice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianxi发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
SMUJay完成签到,获得积分20
4秒前
杨杨完成签到,获得积分20
4秒前
呵呵啊哈完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
mwm621完成签到,获得积分10
5秒前
正直薯片发布了新的文献求助10
5秒前
微光yu完成签到,获得积分10
6秒前
chen发布了新的文献求助10
8秒前
呜哈哈完成签到 ,获得积分10
10秒前
Orange应助无限白羊采纳,获得10
10秒前
jianxi完成签到,获得积分10
10秒前
10秒前
欣喜季节完成签到,获得积分10
11秒前
Mace完成签到,获得积分20
11秒前
科目三应助胡梅13采纳,获得10
11秒前
梦里繁花完成签到,获得积分10
11秒前
12秒前
李健的粉丝团团长应助calm采纳,获得10
12秒前
nieyaochi发布了新的文献求助10
13秒前
13秒前
又又发布了新的文献求助20
15秒前
李健应助张启娜采纳,获得10
15秒前
15秒前
15秒前
於访琴发布了新的文献求助30
16秒前
科研通AI6应助加油小白菜采纳,获得10
16秒前
呆呆鱼完成签到 ,获得积分10
17秒前
白夜完成签到,获得积分20
17秒前
Zx_1993应助xunxun采纳,获得20
17秒前
背后妙旋发布了新的文献求助10
18秒前
Zx_1993应助xunxun采纳,获得20
18秒前
晓静完成签到 ,获得积分10
18秒前
18秒前
ccm应助杨咩咩采纳,获得10
18秒前
18秒前
派大星发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480202
求助须知:如何正确求助?哪些是违规求助? 4581401
关于积分的说明 14380418
捐赠科研通 4509946
什么是DOI,文献DOI怎么找? 2471633
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786