Mechanical strength and band alignment of BAs/GaN heterojunction polar interfaces: A first-principles calculation study

材料科学 异质结 超晶格 光电子学 波段图 半导体 偶极子 钻石 宽禁带半导体 凝聚态物理 复合材料 物理 化学 有机化学
作者
Yuxi He,Hong Sun
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (3) 被引量:18
标识
DOI:10.1103/physrevmaterials.6.034603
摘要

Recently, GaN-on-BAs has been synthesized and demonstrated as a promising architecture for efficient thermal management in GaN based high-power electronic devices with remarkably reduced thermal boundary resistance compared to that of GaN-on-diamond. In this paper, we report studies on ideal strengths and band alignments for polar BAs/GaN heterojunctions and superlattices using first-principles calculations. The results show that under normal compression, all BAs/GaN interface configurations show much higher compressive stiffness compared to that in bulk GaN [0001] direction, with the GaN softening during its structural transformation under compression markedly suppressed, which improves protection of the electronic properties under external impacts. The natural band alignments of the mismatched BAs/GaN heterojunctions are calculated by a three-step approach. Most of the heterojunction and all the superlattice interfaces show type-II staggered band offsets. Large polarization built-in electric fields are predicated in superlattice with repeatedly positive- and negative-charged N-As and Ga-B interfaces, producing a saw-tooth like dipole potential, which can effectively separate electrons and holes to different interfaces, desirable for the photocatalytic processes. Our research shows that BAs/GaN heterojunction can not only provide a much-needed alternative to GaN-on-diamond heat dissipation system in future designing of high-power electronic devices, but also offers possibilities of applications in photovoltaic and photocatalytic devices as a type-II semiconductor heterojunction or superlattice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃的鱼发布了新的文献求助10
1秒前
1秒前
想做只小博狗完成签到,获得积分10
2秒前
DCC完成签到,获得积分10
3秒前
皮凡发布了新的文献求助10
4秒前
我的小宇宙呢完成签到,获得积分10
4秒前
5秒前
欢呼雍发布了新的文献求助10
5秒前
5秒前
含蓄凡柔发布了新的文献求助10
6秒前
triwinster发布了新的文献求助10
6秒前
Chen完成签到,获得积分10
8秒前
9秒前
shiqi发布了新的文献求助10
9秒前
9秒前
11秒前
爆米花应助欢呼雍采纳,获得10
12秒前
Lucas应助欢喜若灵采纳,获得10
12秒前
小张同学发布了新的文献求助10
14秒前
fanfan完成签到 ,获得积分10
14秒前
coco完成签到,获得积分10
15秒前
清脆大树完成签到,获得积分10
16秒前
17秒前
17秒前
Xinger发布了新的文献求助10
19秒前
asdfzxcv应助coco采纳,获得10
21秒前
asdfzxcv应助小张同学采纳,获得10
23秒前
房房不慌完成签到 ,获得积分10
25秒前
zym428完成签到,获得积分10
25秒前
迷人的爆米花完成签到 ,获得积分10
25秒前
26秒前
韩立完成签到 ,获得积分10
27秒前
lll发布了新的文献求助10
28秒前
28秒前
30秒前
30秒前
xun完成签到,获得积分10
30秒前
30秒前
李爱国应助跳跃的鱼采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206