Event detection in online social network: Methodologies, state-of-art, and evolution

时间轴 计算机科学 社会化媒体 事件(粒子物理) 数据科学 提交 领域(数学) 模块化设计 大数据 万维网 复杂事件处理 过程(计算) 数据挖掘 物理 量子力学 数学 考古 数据库 纯数学 历史 操作系统
作者
Xiangyu Hu,Wanlun Ma,Chao Chen,Sheng Wen,Jun Zhang,Yang Xiang,Gaolei Fei
出处
期刊:Computer Science Review [Elsevier]
卷期号:46: 100500-100500 被引量:33
标识
DOI:10.1016/j.cosrev.2022.100500
摘要

Online social network such as Twitter, Facebook and Instagram are increasingly becoming the go-to medium for users to acquire information and discuss what is happening globally. Understanding real-time conversations with masses on social media platforms can provide rich insights into events, provided that there is a way to detect and characterise events. To this end, in the past twenty years, many researchers have been developing event detection methods based on the data collected from various social media platforms. The developed methods for discovering events are generally modular in design and novel in scale and speed. To review the research in this field, we line up existing works for event detection in online social networks and organise them to provide a comprehensive and in-depth survey. This survey comprises three major parts: research methodologies, the review of state-of-the-art literature and the evolution of significant challenges. Each part is supposed to attract readers with different motivations and expectations on the ‘things’ delivered in this survey. For example, the methodologies provide the life-cycle to design new event detection models, from data collection to model evaluations. A timeline and a taxonomy of existing methods are also introduced to elaborate the development of various technologies under the umbrella of event detection. These two parts benefit those with a background in event detection and want to commit a deep exploration of existing models such as discussing their pros and cons alike. The third part shows the development of the major open issues in this field. It also indicates the milestones of each challenge in terms of typical models. Our survey can contribute to the community by highlighting possible new problem statements and opening new research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由高丽发布了新的文献求助30
刚刚
王王发布了新的文献求助10
1秒前
爱大美完成签到,获得积分20
1秒前
2秒前
李爱国应助JHK采纳,获得10
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
清水小镇完成签到 ,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得150
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
majorday应助科研通管家采纳,获得20
5秒前
今后应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
majorday应助科研通管家采纳,获得20
6秒前
隐形曼青应助浮生采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
阳佟初兰发布了新的文献求助10
7秒前
7秒前
8秒前
豪侠发布了新的文献求助10
8秒前
8秒前
9秒前
爆米花应助wsff采纳,获得10
10秒前
大喜子完成签到 ,获得积分10
11秒前
12秒前
HH发布了新的文献求助10
12秒前
Azuaiii发布了新的文献求助10
12秒前
zyx发布了新的文献求助20
12秒前
Tss完成签到,获得积分20
13秒前
搬石头发布了新的文献求助10
13秒前
善学以致用应助sxp1031采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075882
求助须知:如何正确求助?哪些是违规求助? 2728806
关于积分的说明 7506117
捐赠科研通 2377016
什么是DOI,文献DOI怎么找? 1260379
科研通“疑难数据库(出版商)”最低求助积分说明 610960
版权声明 597151