Microplastic detection in arable soil using a 3D Laser Scanning Confocal Microscope coupled with a Machine-Learning Algorithm

微塑料 土壤水分 耕地 环境科学 背景(考古学) 有机质 土壤有机质 环境化学 土壤科学 材料科学 化学 农业 地质学 生物 古生物学 有机化学 生态学
作者
Tabea Scheiterlein,Peter Fiener
标识
DOI:10.5194/egusphere-egu23-4315
摘要

In Europe, about 0.71 million tonnes of agricultural plastic were intentionally used in 2019. Most widely used were plastic films (about 75%), which are dominated by light density polyethylene (LDPE). Especially LDPE plastic films for mulching covers in direct contact arable soil to increase temperature and reduce evaporation. Thereby, microplastic is detached from the mulch film via mechanical and environmental weathering. Another microplastic pathway in arable soil is the application of sewage sludge. Depending on land use, a 4 to 23 times higher microplastic contamination in soils than in the sea is estimated. Obviously, microplastic input to soils is critically high, but an accurate quantification is still lacking. This is partly caused by challenges in detection and analysis of microplastic in soils. First, it is challenging to extract microplastic from a matrix of organic and inorganic particles of similar size. Second, the well-established spectroscopic methods (e.g., Raman and FTIR) for detecting microplastics in water samples are sensitive to soil organic matter, and they are very time-consuming. Eliminating very stable organic particles (e.g., lignin) from soil samples without affecting the microplastic to be measured is another challenge. Hence, a robust analytical approach to detect microplastic in soils is needed. In this context, we developed a methodological approach that is based on a high-throughput (25 g soil sample) density separation scheme for measurements in a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan) and subsequently using a Machine-Learning algorithm to classify and analyze microplastic in soil samples. Our aim is to develop a method for a fast screening of microplastic particle numbers in soils while avoiding the use of harmful substances (e.g., ZnCl2) or prolonged organic carbon destruction. For method development, we contaminate a standard soil (LUFA type 2.1 - sand: 86.6% sand, 9.7% silt, 3.7% clay, 0.58% organic carbon; and LUFA type 2.2 - loamy sand: 72.6% sand, 16.8% silt, 10.7% clay, 1.72% organic carbon) with different concentrations of transparent LDPE microplastic (< 700 &#181;m), LDPE microplastic originating from black mulch film (< 400 &#181;m) and microplastic originating from Bio-degraded black mulch film (< 250 &#181;m). For density separation, three non-toxic, easy to handle mediums were compared for the best microplastic output: distilled water (&#961; = 1.0 g/cm3), 26% NaCl solution (&#961; = 1.2 g/cm3), and 41% CaCl2 solution (&#961; = 1.4 g/cm3). The separated microplastic plus organic particles and some small mineral particles were scanned using a 3D Laser Scanning Confocal Microscope. For each sample, the 3D Laser Scanning Confocal Microscope generates three different main outputs: color, laser intensity, and surface characteristics. Based on these data outputs, a Machine-Learning algorithm distinguishes between the mineral, organic, and microplastic particles. It was found that color changes of microplastics due to soil contact challenge the classification but can be compensated by surface characteristics that become an essential input parameter for the detection. The presented methodological approach provides an accurate and high-throughput microplastic assessment in soil systems, which is critically needed to understand the boundaries of sustainable plastic application in agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助钮祜禄小八采纳,获得10
刚刚
1秒前
yin发布了新的文献求助10
1秒前
闪闪白柏发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
玩命的大树完成签到,获得积分10
4秒前
5秒前
传奇3应助南风采纳,获得10
6秒前
6秒前
小长夜发布了新的文献求助20
6秒前
南星完成签到 ,获得积分10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
无题关注了科研通微信公众号
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
majuanwei发布了新的文献求助50
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
李叶发布了新的文献求助10
9秒前
10秒前
10秒前
cc完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280