Microplastic detection in arable soil using a 3D Laser Scanning Confocal Microscope coupled with a Machine-Learning Algorithm

微塑料 土壤水分 耕地 环境科学 背景(考古学) 有机质 土壤有机质 环境化学 土壤科学 材料科学 化学 农业 地质学 生态学 古生物学 有机化学 生物
作者
Tabea Scheiterlein,Peter Fiener
标识
DOI:10.5194/egusphere-egu23-4315
摘要

In Europe, about 0.71 million tonnes of agricultural plastic were intentionally used in 2019. Most widely used were plastic films (about 75%), which are dominated by light density polyethylene (LDPE). Especially LDPE plastic films for mulching covers in direct contact arable soil to increase temperature and reduce evaporation. Thereby, microplastic is detached from the mulch film via mechanical and environmental weathering. Another microplastic pathway in arable soil is the application of sewage sludge. Depending on land use, a 4 to 23 times higher microplastic contamination in soils than in the sea is estimated. Obviously, microplastic input to soils is critically high, but an accurate quantification is still lacking. This is partly caused by challenges in detection and analysis of microplastic in soils. First, it is challenging to extract microplastic from a matrix of organic and inorganic particles of similar size. Second, the well-established spectroscopic methods (e.g., Raman and FTIR) for detecting microplastics in water samples are sensitive to soil organic matter, and they are very time-consuming. Eliminating very stable organic particles (e.g., lignin) from soil samples without affecting the microplastic to be measured is another challenge. Hence, a robust analytical approach to detect microplastic in soils is needed. In this context, we developed a methodological approach that is based on a high-throughput (25 g soil sample) density separation scheme for measurements in a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan) and subsequently using a Machine-Learning algorithm to classify and analyze microplastic in soil samples. Our aim is to develop a method for a fast screening of microplastic particle numbers in soils while avoiding the use of harmful substances (e.g., ZnCl2) or prolonged organic carbon destruction. For method development, we contaminate a standard soil (LUFA type 2.1 - sand: 86.6% sand, 9.7% silt, 3.7% clay, 0.58% organic carbon; and LUFA type 2.2 - loamy sand: 72.6% sand, 16.8% silt, 10.7% clay, 1.72% organic carbon) with different concentrations of transparent LDPE microplastic (< 700 &#181;m), LDPE microplastic originating from black mulch film (< 400 &#181;m) and microplastic originating from Bio-degraded black mulch film (< 250 &#181;m). For density separation, three non-toxic, easy to handle mediums were compared for the best microplastic output: distilled water (&#961; = 1.0 g/cm3), 26% NaCl solution (&#961; = 1.2 g/cm3), and 41% CaCl2 solution (&#961; = 1.4 g/cm3). The separated microplastic plus organic particles and some small mineral particles were scanned using a 3D Laser Scanning Confocal Microscope. For each sample, the 3D Laser Scanning Confocal Microscope generates three different main outputs: color, laser intensity, and surface characteristics. Based on these data outputs, a Machine-Learning algorithm distinguishes between the mineral, organic, and microplastic particles. It was found that color changes of microplastics due to soil contact challenge the classification but can be compensated by surface characteristics that become an essential input parameter for the detection. The presented methodological approach provides an accurate and high-throughput microplastic assessment in soil systems, which is critically needed to understand the boundaries of sustainable plastic application in agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凳凳子完成签到,获得积分10
刚刚
sun完成签到,获得积分10
1秒前
CACT完成签到,获得积分10
2秒前
苽峰完成签到,获得积分10
2秒前
沈剑心发布了新的文献求助10
2秒前
Hello应助WT采纳,获得10
3秒前
王木木完成签到 ,获得积分10
3秒前
白色蒲公英完成签到,获得积分10
3秒前
昏睡的翩跹关注了科研通微信公众号
3秒前
乐可乐完成签到,获得积分10
4秒前
5秒前
仓促过客发布了新的文献求助10
6秒前
6秒前
ilk666完成签到,获得积分10
8秒前
8秒前
邢哥哥发布了新的文献求助30
8秒前
bigxianyu完成签到,获得积分10
8秒前
小雨完成签到,获得积分10
9秒前
不知所措的咪完成签到,获得积分10
10秒前
加加林发布了新的文献求助10
11秒前
KevinT应助yang采纳,获得30
11秒前
可爱半山完成签到 ,获得积分10
11秒前
酷波er应助o海边风o采纳,获得30
12秒前
12秒前
sui完成签到,获得积分10
13秒前
aaaaa发布了新的文献求助10
14秒前
呆鹅喵喵完成签到,获得积分10
18秒前
WY完成签到,获得积分10
18秒前
19秒前
Ammon完成签到,获得积分10
21秒前
姜惠完成签到,获得积分10
21秒前
LiHongXi完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
陈花蕾完成签到 ,获得积分10
23秒前
23秒前
是谁还没睡完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733231
求助须知:如何正确求助?哪些是违规求助? 5347351
关于积分的说明 15323400
捐赠科研通 4878359
什么是DOI,文献DOI怎么找? 2621189
邀请新用户注册赠送积分活动 1570317
关于科研通互助平台的介绍 1527219