Microplastic detection in arable soil using a 3D Laser Scanning Confocal Microscope coupled with a Machine-Learning Algorithm

微塑料 土壤水分 耕地 环境科学 背景(考古学) 有机质 土壤有机质 环境化学 土壤科学 材料科学 化学 农业 地质学 生物 古生物学 有机化学 生态学
作者
Tabea Scheiterlein,Peter Fiener
标识
DOI:10.5194/egusphere-egu23-4315
摘要

In Europe, about 0.71 million tonnes of agricultural plastic were intentionally used in 2019. Most widely used were plastic films (about 75%), which are dominated by light density polyethylene (LDPE). Especially LDPE plastic films for mulching covers in direct contact arable soil to increase temperature and reduce evaporation. Thereby, microplastic is detached from the mulch film via mechanical and environmental weathering. Another microplastic pathway in arable soil is the application of sewage sludge. Depending on land use, a 4 to 23 times higher microplastic contamination in soils than in the sea is estimated. Obviously, microplastic input to soils is critically high, but an accurate quantification is still lacking. This is partly caused by challenges in detection and analysis of microplastic in soils. First, it is challenging to extract microplastic from a matrix of organic and inorganic particles of similar size. Second, the well-established spectroscopic methods (e.g., Raman and FTIR) for detecting microplastics in water samples are sensitive to soil organic matter, and they are very time-consuming. Eliminating very stable organic particles (e.g., lignin) from soil samples without affecting the microplastic to be measured is another challenge. Hence, a robust analytical approach to detect microplastic in soils is needed. In this context, we developed a methodological approach that is based on a high-throughput (25 g soil sample) density separation scheme for measurements in a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan) and subsequently using a Machine-Learning algorithm to classify and analyze microplastic in soil samples. Our aim is to develop a method for a fast screening of microplastic particle numbers in soils while avoiding the use of harmful substances (e.g., ZnCl2) or prolonged organic carbon destruction. For method development, we contaminate a standard soil (LUFA type 2.1 - sand: 86.6% sand, 9.7% silt, 3.7% clay, 0.58% organic carbon; and LUFA type 2.2 - loamy sand: 72.6% sand, 16.8% silt, 10.7% clay, 1.72% organic carbon) with different concentrations of transparent LDPE microplastic (< 700 &#181;m), LDPE microplastic originating from black mulch film (< 400 &#181;m) and microplastic originating from Bio-degraded black mulch film (< 250 &#181;m). For density separation, three non-toxic, easy to handle mediums were compared for the best microplastic output: distilled water (&#961; = 1.0 g/cm3), 26% NaCl solution (&#961; = 1.2 g/cm3), and 41% CaCl2 solution (&#961; = 1.4 g/cm3). The separated microplastic plus organic particles and some small mineral particles were scanned using a 3D Laser Scanning Confocal Microscope. For each sample, the 3D Laser Scanning Confocal Microscope generates three different main outputs: color, laser intensity, and surface characteristics. Based on these data outputs, a Machine-Learning algorithm distinguishes between the mineral, organic, and microplastic particles. It was found that color changes of microplastics due to soil contact challenge the classification but can be compensated by surface characteristics that become an essential input parameter for the detection. The presented methodological approach provides an accurate and high-throughput microplastic assessment in soil systems, which is critically needed to understand the boundaries of sustainable plastic application in agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷霆康康完成签到,获得积分10
刚刚
奋斗的曼容完成签到,获得积分10
1秒前
1秒前
郷禦完成签到,获得积分10
1秒前
爆米花应助大猫也疯狂采纳,获得10
2秒前
内向南风完成签到 ,获得积分10
2秒前
孤独衣完成签到,获得积分10
3秒前
kongchao008完成签到,获得积分10
4秒前
无辜的忘幽完成签到,获得积分10
4秒前
独立卫生间完成签到,获得积分10
4秒前
章鱼小丸子完成签到,获得积分10
4秒前
默默的立辉完成签到,获得积分10
5秒前
不知完成签到 ,获得积分10
5秒前
WNL完成签到,获得积分10
6秒前
铎铎铎完成签到 ,获得积分10
6秒前
jjjjchou完成签到,获得积分10
6秒前
tann完成签到 ,获得积分10
7秒前
霸气鞯完成签到 ,获得积分10
9秒前
关键词完成签到,获得积分10
10秒前
愉快的Jerry完成签到,获得积分10
11秒前
老实皮卡丘完成签到 ,获得积分10
11秒前
行走De太阳花完成签到,获得积分10
11秒前
louis完成签到,获得积分10
13秒前
14秒前
Smiling完成签到 ,获得积分10
14秒前
HK完成签到 ,获得积分10
14秒前
biye6完成签到,获得积分10
16秒前
WJane完成签到,获得积分10
16秒前
王歪歪完成签到,获得积分10
16秒前
冯家源完成签到,获得积分10
16秒前
张三完成签到 ,获得积分10
16秒前
汤圆完成签到,获得积分10
17秒前
Arilus完成签到 ,获得积分10
17秒前
kellen完成签到,获得积分10
17秒前
牧紫菱完成签到,获得积分10
17秒前
fat发布了新的文献求助10
18秒前
幸福完成签到,获得积分10
18秒前
嘎嘎嘎完成签到,获得积分10
19秒前
Silence完成签到,获得积分0
19秒前
有魅力的大船完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839