Microplastic detection in arable soil using a 3D Laser Scanning Confocal Microscope coupled with a Machine-Learning Algorithm

微塑料 土壤水分 耕地 环境科学 背景(考古学) 有机质 土壤有机质 环境化学 土壤科学 材料科学 化学 农业 地质学 生态学 古生物学 有机化学 生物
作者
Tabea Scheiterlein,Peter Fiener
标识
DOI:10.5194/egusphere-egu23-4315
摘要

In Europe, about 0.71 million tonnes of agricultural plastic were intentionally used in 2019. Most widely used were plastic films (about 75%), which are dominated by light density polyethylene (LDPE). Especially LDPE plastic films for mulching covers in direct contact arable soil to increase temperature and reduce evaporation. Thereby, microplastic is detached from the mulch film via mechanical and environmental weathering. Another microplastic pathway in arable soil is the application of sewage sludge. Depending on land use, a 4 to 23 times higher microplastic contamination in soils than in the sea is estimated. Obviously, microplastic input to soils is critically high, but an accurate quantification is still lacking. This is partly caused by challenges in detection and analysis of microplastic in soils. First, it is challenging to extract microplastic from a matrix of organic and inorganic particles of similar size. Second, the well-established spectroscopic methods (e.g., Raman and FTIR) for detecting microplastics in water samples are sensitive to soil organic matter, and they are very time-consuming. Eliminating very stable organic particles (e.g., lignin) from soil samples without affecting the microplastic to be measured is another challenge. Hence, a robust analytical approach to detect microplastic in soils is needed. In this context, we developed a methodological approach that is based on a high-throughput (25 g soil sample) density separation scheme for measurements in a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan) and subsequently using a Machine-Learning algorithm to classify and analyze microplastic in soil samples. Our aim is to develop a method for a fast screening of microplastic particle numbers in soils while avoiding the use of harmful substances (e.g., ZnCl2) or prolonged organic carbon destruction. For method development, we contaminate a standard soil (LUFA type 2.1 - sand: 86.6% sand, 9.7% silt, 3.7% clay, 0.58% organic carbon; and LUFA type 2.2 - loamy sand: 72.6% sand, 16.8% silt, 10.7% clay, 1.72% organic carbon) with different concentrations of transparent LDPE microplastic (< 700 &#181;m), LDPE microplastic originating from black mulch film (< 400 &#181;m) and microplastic originating from Bio-degraded black mulch film (< 250 &#181;m). For density separation, three non-toxic, easy to handle mediums were compared for the best microplastic output: distilled water (&#961; = 1.0 g/cm3), 26% NaCl solution (&#961; = 1.2 g/cm3), and 41% CaCl2 solution (&#961; = 1.4 g/cm3). The separated microplastic plus organic particles and some small mineral particles were scanned using a 3D Laser Scanning Confocal Microscope. For each sample, the 3D Laser Scanning Confocal Microscope generates three different main outputs: color, laser intensity, and surface characteristics. Based on these data outputs, a Machine-Learning algorithm distinguishes between the mineral, organic, and microplastic particles. It was found that color changes of microplastics due to soil contact challenge the classification but can be compensated by surface characteristics that become an essential input parameter for the detection. The presented methodological approach provides an accurate and high-throughput microplastic assessment in soil systems, which is critically needed to understand the boundaries of sustainable plastic application in agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
法力无边完成签到,获得积分10
3秒前
我是老大应助一一一采纳,获得10
5秒前
酷波er应助zhchong5采纳,获得10
6秒前
6秒前
8秒前
Lucas应助简单的惋庭采纳,获得10
8秒前
8秒前
大力的诗蕾完成签到 ,获得积分10
9秒前
10秒前
11秒前
十三完成签到,获得积分10
12秒前
13秒前
leeteukxx完成签到,获得积分10
13秒前
14秒前
15秒前
xzn1123应助鲤鱼绿旋采纳,获得10
15秒前
15秒前
HZY发布了新的文献求助10
20秒前
20秒前
斯文败类应助长情海雪采纳,获得10
22秒前
23秒前
24秒前
轻松沛凝完成签到,获得积分10
27秒前
李存发布了新的文献求助10
27秒前
鲤鱼绿旋发布了新的文献求助10
28秒前
科研通AI2S应助QinQin采纳,获得10
30秒前
moony完成签到 ,获得积分10
30秒前
31秒前
虎虎虎完成签到,获得积分10
33秒前
cao_ming完成签到,获得积分10
33秒前
34秒前
鲤鱼绿旋完成签到,获得积分10
34秒前
www完成签到,获得积分10
35秒前
36秒前
www发布了新的文献求助10
37秒前
38秒前
xujiejiuxi发布了新的文献求助30
39秒前
42秒前
pluto应助Sandro采纳,获得50
42秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329374
求助须知:如何正确求助?哪些是违规求助? 2959048
关于积分的说明 8594165
捐赠科研通 2637581
什么是DOI,文献DOI怎么找? 1443623
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656183