Transformer Based Defense GAN Against Palm-Vein Adversarial Attacks

计算机科学 卷积神经网络 人工智能 深度学习 生物识别 变压器 特征提取 机器学习 模式识别(心理学) 人工神经网络 计算 算法 工程类 电压 电气工程
作者
Yantao Li,Song Ruan,Huafeng Qin,Shaojiang Deng,Mounîm El Yacoubi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1509-1523 被引量:8
标识
DOI:10.1109/tifs.2023.3243782
摘要

Vein biometrics is a high security and privacy preserving identification technology that has attracted increasing attention over the last decade. Deep neural networks (DNNs), such as convolutional neural networks (CNN), have shown strong capabilities for robust feature representation, and have achieved, as a result, state-of-the-art performance on various vision tasks. Inspired by their success, deep learning models have been widely investigated for vein recognition and have shown significant improvement of identification accuracy compared to handcrafted models. Existing deep learning models, however, are vulnerable to adversarial perturbation attacks, where thoughtfully crafted small perturbations can cause misclassification of legitimate images, degrading, thereby, the efficiency of vein recognition systems. To address this problem, we propose, in this paper, VeinGuard, a novel defense framework to defend deep learning classifiers against adversarial palm-vein image attacks, composed of a local transformer-based GAN and a purifier. VeinGuard comprises two components: a local transformer-based GAN (LTGAN) that learns the distribution of unperturbed vein images and generates high-quality palm-vein images, and a purifier consisting of a trainable residual network and of a pre-trained generator from LTGAN that automatically removes a wide variety of adversarial perturbations. The resulting clean images are fed to vein classifiers for identification, thereby avoiding adversarial attacks. We evaluate VeinGuard on three public vein datasets in terms of white-box attacks, black-box attacks, ablation experiments, and computation time. The experimental results show that VeinGuard allows filtering the perturbations and enables the classifiers to achieve state-of-the-art recognition results for different adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹏飞九霄完成签到 ,获得积分10
1秒前
赘婿应助yzy-gc采纳,获得10
2秒前
隐形曼青应助MXX采纳,获得10
2秒前
3秒前
meixinhu完成签到,获得积分10
3秒前
姜姜完成签到,获得积分10
5秒前
6秒前
6秒前
笑点低的铁身完成签到 ,获得积分10
7秒前
小豪娃发布了新的文献求助10
8秒前
lilala应助姜姜采纳,获得10
8秒前
ZHANG完成签到 ,获得积分10
9秒前
10秒前
arisfield完成签到,获得积分10
11秒前
11秒前
yzy-gc完成签到,获得积分10
11秒前
虚幻凝冬发布了新的文献求助10
13秒前
欣慰的书本完成签到 ,获得积分10
14秒前
MXX发布了新的文献求助10
14秒前
傻瓜子发布了新的文献求助10
15秒前
scarlet完成签到 ,获得积分10
17秒前
小豪娃完成签到,获得积分20
17秒前
song完成签到,获得积分10
19秒前
鱼儿123完成签到,获得积分10
21秒前
米夏完成签到 ,获得积分10
22秒前
俭朴的一曲完成签到,获得积分10
22秒前
甜甜圈完成签到 ,获得积分10
22秒前
liyanglin完成签到 ,获得积分10
24秒前
乐乐应助runner采纳,获得10
24秒前
芝麻完成签到,获得积分10
25秒前
mokucyan完成签到,获得积分10
26秒前
和功耗过高完成签到,获得积分10
26秒前
28秒前
英俊的铭应助11采纳,获得10
28秒前
张小度ever完成签到 ,获得积分10
29秒前
深情安青应助露珠采纳,获得10
29秒前
30秒前
小垃圾完成签到,获得积分10
30秒前
绛羽镜发布了新的文献求助10
31秒前
淡淡明辉完成签到,获得积分10
33秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830396
关于积分的说明 7976790
捐赠科研通 2491986
什么是DOI,文献DOI怎么找? 1329153
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954