已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer Based Defense GAN Against Palm-Vein Adversarial Attacks

计算机科学 卷积神经网络 人工智能 深度学习 生物识别 变压器 特征提取 机器学习 模式识别(心理学) 人工神经网络 计算 算法 工程类 电压 电气工程
作者
Yantao Li,Song Ruan,Huafeng Qin,Shaojiang Deng,Mounîm El Yacoubi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1509-1523 被引量:8
标识
DOI:10.1109/tifs.2023.3243782
摘要

Vein biometrics is a high security and privacy preserving identification technology that has attracted increasing attention over the last decade. Deep neural networks (DNNs), such as convolutional neural networks (CNN), have shown strong capabilities for robust feature representation, and have achieved, as a result, state-of-the-art performance on various vision tasks. Inspired by their success, deep learning models have been widely investigated for vein recognition and have shown significant improvement of identification accuracy compared to handcrafted models. Existing deep learning models, however, are vulnerable to adversarial perturbation attacks, where thoughtfully crafted small perturbations can cause misclassification of legitimate images, degrading, thereby, the efficiency of vein recognition systems. To address this problem, we propose, in this paper, VeinGuard, a novel defense framework to defend deep learning classifiers against adversarial palm-vein image attacks, composed of a local transformer-based GAN and a purifier. VeinGuard comprises two components: a local transformer-based GAN (LTGAN) that learns the distribution of unperturbed vein images and generates high-quality palm-vein images, and a purifier consisting of a trainable residual network and of a pre-trained generator from LTGAN that automatically removes a wide variety of adversarial perturbations. The resulting clean images are fed to vein classifiers for identification, thereby avoiding adversarial attacks. We evaluate VeinGuard on three public vein datasets in terms of white-box attacks, black-box attacks, ablation experiments, and computation time. The experimental results show that VeinGuard allows filtering the perturbations and enables the classifiers to achieve state-of-the-art recognition results for different adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡铃铛完成签到 ,获得积分10
1秒前
上官若男应助快乐树叶采纳,获得10
1秒前
1秒前
wobisheng完成签到,获得积分10
1秒前
1秒前
源源完成签到 ,获得积分10
1秒前
丘山发布了新的文献求助10
4秒前
笨笨人龙完成签到 ,获得积分10
4秒前
linwenfengcool完成签到,获得积分10
5秒前
5秒前
9秒前
Akim应助lixioani219采纳,获得10
9秒前
XXX发布了新的文献求助10
10秒前
深情安青应助冷酷电脑采纳,获得10
11秒前
shiro完成签到,获得积分10
13秒前
14秒前
15秒前
YY发布了新的文献求助10
15秒前
ttfakira完成签到,获得积分10
16秒前
揽月yue完成签到 ,获得积分10
17秒前
17秒前
18秒前
meitoumi发布了新的文献求助10
19秒前
21秒前
AAAA发布了新的文献求助10
21秒前
NexusExplorer应助oo采纳,获得10
22秒前
852应助YY采纳,获得10
22秒前
22秒前
小L同学关注了科研通微信公众号
24秒前
qqweisiweiqq发布了新的文献求助10
25秒前
兔子发布了新的文献求助10
26秒前
26秒前
YOLO发布了新的文献求助30
27秒前
30秒前
33秒前
爆米花应助meitoumi采纳,获得10
33秒前
马马发布了新的文献求助10
33秒前
oo发布了新的文献求助10
34秒前
37秒前
Tian发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062976
求助须知:如何正确求助?哪些是违规求助? 4286688
关于积分的说明 13357633
捐赠科研通 4104617
什么是DOI,文献DOI怎么找? 2247558
邀请新用户注册赠送积分活动 1253122
关于科研通互助平台的介绍 1184083