Transformer Based Defense GAN Against Palm-Vein Adversarial Attacks

计算机科学 卷积神经网络 人工智能 深度学习 生物识别 变压器 特征提取 机器学习 模式识别(心理学) 人工神经网络 计算 算法 工程类 电压 电气工程
作者
Yantao Li,Song Ruan,Huafeng Qin,Shaojiang Deng,Mounîm El Yacoubi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1509-1523 被引量:8
标识
DOI:10.1109/tifs.2023.3243782
摘要

Vein biometrics is a high security and privacy preserving identification technology that has attracted increasing attention over the last decade. Deep neural networks (DNNs), such as convolutional neural networks (CNN), have shown strong capabilities for robust feature representation, and have achieved, as a result, state-of-the-art performance on various vision tasks. Inspired by their success, deep learning models have been widely investigated for vein recognition and have shown significant improvement of identification accuracy compared to handcrafted models. Existing deep learning models, however, are vulnerable to adversarial perturbation attacks, where thoughtfully crafted small perturbations can cause misclassification of legitimate images, degrading, thereby, the efficiency of vein recognition systems. To address this problem, we propose, in this paper, VeinGuard, a novel defense framework to defend deep learning classifiers against adversarial palm-vein image attacks, composed of a local transformer-based GAN and a purifier. VeinGuard comprises two components: a local transformer-based GAN (LTGAN) that learns the distribution of unperturbed vein images and generates high-quality palm-vein images, and a purifier consisting of a trainable residual network and of a pre-trained generator from LTGAN that automatically removes a wide variety of adversarial perturbations. The resulting clean images are fed to vein classifiers for identification, thereby avoiding adversarial attacks. We evaluate VeinGuard on three public vein datasets in terms of white-box attacks, black-box attacks, ablation experiments, and computation time. The experimental results show that VeinGuard allows filtering the perturbations and enables the classifiers to achieve state-of-the-art recognition results for different adversarial attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈伊发布了新的文献求助10
刚刚
小火车完成签到,获得积分10
刚刚
星辰大海应助啃猫爪采纳,获得10
1秒前
2秒前
3秒前
猪猪hero应助许许采纳,获得10
3秒前
6秒前
反义词发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
体贴汽车发布了新的文献求助10
12秒前
mingming发布了新的文献求助10
15秒前
生动醉山发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
David完成签到,获得积分10
18秒前
科目三应助等都到采纳,获得10
19秒前
20秒前
Pudding完成签到,获得积分10
20秒前
qqq发布了新的文献求助30
22秒前
取名叫做利完成签到,获得积分10
22秒前
janarbek发布了新的文献求助30
23秒前
开花发布了新的文献求助10
23秒前
甘蓝型油菜完成签到,获得积分10
24秒前
旺仔完成签到,获得积分10
24秒前
杨大大发布了新的文献求助10
24秒前
杨冰完成签到,获得积分10
25秒前
冬天回来661完成签到,获得积分10
26秒前
希望天下0贩的0应助ii采纳,获得10
27秒前
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
28秒前
28秒前
CharlotteBlue应助科研通管家采纳,获得50
28秒前
64658应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488