Tribovoltaic effect: Fundamental working mechanism and emerging applications

摩擦电效应 纳米发生器 软件可移植性 接触带电 半导体 电气工程 肖特基二极管 能量收集 机制(生物学) 纳米技术 材料科学 工程物理 计算机科学 电子工程 电压 工程类 物理 能量(信号处理) 二极管 量子力学 复合材料 程序设计语言
作者
Saichon Sriphan,Naratip Vittayakorn
出处
期刊:Materials Today Nano [Elsevier]
卷期号:22: 100318-100318 被引量:9
标识
DOI:10.1016/j.mtnano.2023.100318
摘要

The triboelectric nanogenerator (TENG) is currently a promising technology operated by coupling mechanisms between contact electrification and electrostatic induction for efficiently converting mechanical energy into electricity. Broad applications have been demonstrated practically. However, the electrical signal produced from the TENG has a pulsed alternating current output, which needs to be rectified by the circuit from alternating current to direct current (DC) appropriately for powering/storing small electronic systems. This limits utilization by the drawbacks of conversion efficiency, size, and portability. The development of a DC TENG is thus essential. This novel physical phenomenon (DC TENG) emerged just recently, mainly based on Schottky, p-n and liquid-semiconductor junctions, and a multilayered structure junction (i.e. metal/semiconductor-insulator-semiconductor), called the tribovoltaic nanogenerator (TVNG). Pair sliding from two triboelectric materials with different electronic band energies serves as continuous DC with a unique mechanism. The excited carriers (corresponding with the generated outputs) can be enhanced from the tribovoltaic effect through theoretical design, and the concept can be hybridized with other technologies. This provides the potential of in-depth study and practical demonstrations for advanced harvesting and sensing. This review comprehensively presents the origins of triboelectric and tribovoltaic effects, related to fundamental and dynamic TVNG mechanisms in various material systems, and recent progress of the TVNG in designs and applications. Moreover, the challenge and outlook are discussed lastly for the future direction of TVNG development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Anxinxin采纳,获得10
刚刚
ww发布了新的文献求助10
刚刚
这小猪真帅完成签到,获得积分10
1秒前
Hulda完成签到,获得积分10
1秒前
可靠访蕊完成签到 ,获得积分10
2秒前
深情安青应助科研小白采纳,获得10
2秒前
八八完成签到,获得积分20
3秒前
请叫我风吹麦浪应助AIA7采纳,获得10
3秒前
智齿怪物一号完成签到,获得积分10
3秒前
舒适山槐完成签到,获得积分10
3秒前
HJJHJH发布了新的文献求助10
3秒前
易哒哒发布了新的文献求助10
3秒前
ZZZpp完成签到,获得积分10
4秒前
大个应助756采纳,获得10
5秒前
6秒前
喵呜发布了新的文献求助10
6秒前
Ava应助k7采纳,获得10
6秒前
领导范儿应助cc采纳,获得10
6秒前
橘子发布了新的文献求助40
6秒前
6秒前
benben完成签到,获得积分10
7秒前
wjq完成签到,获得积分10
7秒前
7秒前
8秒前
亓亓完成签到 ,获得积分10
8秒前
8秒前
phz发布了新的文献求助10
9秒前
9秒前
Stephen完成签到,获得积分10
9秒前
shengChen完成签到,获得积分10
9秒前
9秒前
怎么睡不醒完成签到 ,获得积分10
9秒前
CipherSage应助沉静的迎荷采纳,获得10
10秒前
彩色铅笔完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
淡定的思松应助通~采纳,获得10
11秒前
ycp完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794