医学
图像质量
磁共振成像
矢状面
核医学
工件(错误)
放射科
流体衰减反转恢复
人工智能
图像(数学)
计算机科学
作者
Mengsha Zou,Qin Zhou,Ruocheng Li,Manshi Hu,Long Qian,H. J. Yang,Jing Zhao
标识
DOI:10.1177/02841851231152098
摘要
Synthetic magnetic resonance imaging (MRI) might replace the conventional MR sequences in brain evaluation to shorten scan time and obtain multiple quantitative parameters.To evaluate the image quality of multiple-delay-multiple-echo (MDME) sequence-derived synthetic brain MR images compared to conventional images by considering a multi-age sample.Image sets of conventional and synthetic MRI of 200 participants were included. On the basis of the presence of intracranial lesions, the participants were divided into a normal group and a pathological group. Two neuroradiologists compared the anonymous and unordered images. Image quality, artifacts, and diagnostic performance were analyzed.In the quantitative analysis, comparing with conventional images, MDME sequence-derived synthetic MRI demonstrated an equal/greater signal-to-noise ratio and contrast-to-noise ratio (CNR) in all age groups. Specifically, for participants aged ≤2 years, synthetic T2-fluid-attenuated inversion recovery imaging showed a significantly higher cerebellum gray/white matter CNR (P < 0.05). In the qualitative and artifact analyses, except for the superior sagittal sinus and cranial nerves, synthetic MRI showed good imaging quality (≥3 points) in all brain structures. On synthetic T1-weighted imaging, high signal intensity within the superior sagittal sinus was found in most of our participants (107/118, 90.7%). No difference was observed between synthetic and conventional MRI in diagnosing the lesions.MDME sequence-derived synthetic MRI showed similar image quality and diagnostic performance with a shorter acquisition time than conventional MRI. However, the high signal intensity within the superior sagittal sinus on synthetic T1-weighted images requires consideration.
科研通智能强力驱动
Strongly Powered by AbleSci AI