NLOS/LOS Classification by Constructing Indirect Environment Interaction from GNSS Receiver Measurements Using a Transformer-Based Deep Learning Model

全球导航卫星系统应用 非视线传播 计算机科学 人工智能 机器学习 深度学习 特征提取 支持向量机 特征学习 全球定位系统 电信 无线
作者
Zhenni Li,Kungan Zeng,Lujia Wang,Kan Xie,Yuan Rong,Shengli Xie
出处
期刊:Proceedings of the Institute of Navigation ... International Technical Meeting 被引量:8
标识
DOI:10.33012/2023.18657
摘要

The blockage of the direct signal by high-rise buildings degrades the positioning performance of the global navigation satellite system (GNSS) in urban canyons. Traditional methods usually distinguish the line-of-sight (LOS), and non-line-of-sight (NLOS) signals using the satellite's elevation angle or signal strength to mitigate the issue, which cannot obtain satisfactory classification accuracy in complex urban environments. Recently, machine learning-based methods using GNSS measurements have been developed to improve GNSS signal classification. However, dynamic changes in environments and the limited features from the measurements raise a challenge to the classification performance of algorithms. To address the above issues, a transformerbased deep learning model in this paper is proposed for LOS and NLOS signal classification. The innovation of our proposed model is using the self-attention mechanism to construct the indirect environment interaction for learning the representation of environmental information. First, the measurements of captured satellites in the same epoch will be fed into the model. The model's feature extraction layer can learn the fundamental representation. Then, the self-attention module can construct the indirect environment interaction by computing the relevance between the satellites. Finally, the module's output is transferred to the output layer for classification. A comparative experimental study is conducted with real-world data collected in urban canyons. The results demonstrate that our model can keep more than 90% classification accuracy while support vector machine (SVM) and multilayer perception (MLP) decline to about 80% with the sites increasing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张mingyu123发布了新的文献求助10
刚刚
科研通AI5应助上帝掷骰子采纳,获得20
刚刚
1秒前
1秒前
上官若男应助husaheng采纳,获得10
1秒前
3秒前
hilapo完成签到,获得积分10
3秒前
4秒前
4秒前
小蘑菇应助动听的康乃馨采纳,获得10
4秒前
科目三应助夜王采纳,获得10
4秒前
哪位发布了新的文献求助10
4秒前
松与杉完成签到,获得积分20
5秒前
叶彤发布了新的文献求助10
5秒前
七七发布了新的文献求助10
5秒前
5秒前
ma发布了新的文献求助10
6秒前
自然的李完成签到 ,获得积分10
7秒前
1223发布了新的文献求助10
8秒前
9秒前
科研通AI5应助wudidafei采纳,获得10
10秒前
10秒前
11秒前
森宝完成签到,获得积分10
11秒前
海诺完成签到 ,获得积分10
11秒前
shy完成签到 ,获得积分10
12秒前
12秒前
accepted完成签到,获得积分10
12秒前
Owen应助1223采纳,获得10
13秒前
15秒前
夜王发布了新的文献求助10
17秒前
guishen10发布了新的文献求助10
17秒前
17秒前
搜集达人应助机智灵薇采纳,获得10
17秒前
17秒前
忧郁夏兰发布了新的文献求助20
18秒前
21秒前
21秒前
zhendemengshi发布了新的文献求助10
21秒前
wgl200212发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049114
求助须知:如何正确求助?哪些是违规求助? 4277221
关于积分的说明 13333105
捐赠科研通 4091866
什么是DOI,文献DOI怎么找? 2239302
邀请新用户注册赠送积分活动 1246171
关于科研通互助平台的介绍 1174771