NLOS/LOS Classification by Constructing Indirect Environment Interaction from GNSS Receiver Measurements Using a Transformer-Based Deep Learning Model

全球导航卫星系统应用 非视线传播 计算机科学 人工智能 机器学习 深度学习 特征提取 支持向量机 特征学习 全球定位系统 电信 无线
作者
Zhenni Li,Kungan Zeng,Lujia Wang,Kan Xie,Yuan Rong,Shengli Xie
出处
期刊:Proceedings of the Institute of Navigation ... International Technical Meeting 被引量:7
标识
DOI:10.33012/2023.18657
摘要

The blockage of the direct signal by high-rise buildings degrades the positioning performance of the global navigation satellite system (GNSS) in urban canyons. Traditional methods usually distinguish the line-of-sight (LOS), and non-line-of-sight (NLOS) signals using the satellite's elevation angle or signal strength to mitigate the issue, which cannot obtain satisfactory classification accuracy in complex urban environments. Recently, machine learning-based methods using GNSS measurements have been developed to improve GNSS signal classification. However, dynamic changes in environments and the limited features from the measurements raise a challenge to the classification performance of algorithms. To address the above issues, a transformerbased deep learning model in this paper is proposed for LOS and NLOS signal classification. The innovation of our proposed model is using the self-attention mechanism to construct the indirect environment interaction for learning the representation of environmental information. First, the measurements of captured satellites in the same epoch will be fed into the model. The model's feature extraction layer can learn the fundamental representation. Then, the self-attention module can construct the indirect environment interaction by computing the relevance between the satellites. Finally, the module's output is transferred to the output layer for classification. A comparative experimental study is conducted with real-world data collected in urban canyons. The results demonstrate that our model can keep more than 90% classification accuracy while support vector machine (SVM) and multilayer perception (MLP) decline to about 80% with the sites increasing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乖乖发布了新的文献求助10
1秒前
1秒前
song24517发布了新的文献求助20
1秒前
顺利琦完成签到,获得积分10
2秒前
李子发布了新的文献求助10
2秒前
pbf完成签到,获得积分10
2秒前
2秒前
lyn发布了新的文献求助30
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Twikky完成签到,获得积分10
2秒前
柚子皮应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Akim应助夏末采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
迟大猫应助想学习采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
4秒前
期刊应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
最卷的卷心菜完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得50
4秒前
田様应助科研通管家采纳,获得100
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
yun尘世应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
知性的映之完成签到,获得积分10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678