NLOS/LOS Classification by Constructing Indirect Environment Interaction from GNSS Receiver Measurements Using a Transformer-Based Deep Learning Model

全球导航卫星系统应用 非视线传播 计算机科学 人工智能 机器学习 深度学习 特征提取 支持向量机 特征学习 全球定位系统 电信 无线
作者
Zhenni Li,Kungan Zeng,Lujia Wang,Kan Xie,Yuan Rong,Shengli Xie
出处
期刊:Proceedings of the Institute of Navigation ... International Technical Meeting 被引量:7
标识
DOI:10.33012/2023.18657
摘要

The blockage of the direct signal by high-rise buildings degrades the positioning performance of the global navigation satellite system (GNSS) in urban canyons. Traditional methods usually distinguish the line-of-sight (LOS), and non-line-of-sight (NLOS) signals using the satellite's elevation angle or signal strength to mitigate the issue, which cannot obtain satisfactory classification accuracy in complex urban environments. Recently, machine learning-based methods using GNSS measurements have been developed to improve GNSS signal classification. However, dynamic changes in environments and the limited features from the measurements raise a challenge to the classification performance of algorithms. To address the above issues, a transformerbased deep learning model in this paper is proposed for LOS and NLOS signal classification. The innovation of our proposed model is using the self-attention mechanism to construct the indirect environment interaction for learning the representation of environmental information. First, the measurements of captured satellites in the same epoch will be fed into the model. The model's feature extraction layer can learn the fundamental representation. Then, the self-attention module can construct the indirect environment interaction by computing the relevance between the satellites. Finally, the module's output is transferred to the output layer for classification. A comparative experimental study is conducted with real-world data collected in urban canyons. The results demonstrate that our model can keep more than 90% classification accuracy while support vector machine (SVM) and multilayer perception (MLP) decline to about 80% with the sites increasing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwy109发布了新的文献求助10
刚刚
NexusExplorer应助凉皮亮晶晶采纳,获得10
刚刚
1秒前
加贝峥发布了新的文献求助10
1秒前
1秒前
2秒前
zwy109发布了新的文献求助10
2秒前
wanci应助杰卿采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
只道寻常完成签到,获得积分10
2秒前
ZJPPPP应助科研通管家采纳,获得10
2秒前
kluberos关注了科研通微信公众号
2秒前
hby完成签到,获得积分10
2秒前
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
山山而川完成签到,获得积分10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
耍酷小贾完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
乌冬面发布了新的文献求助10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
聪慧小霜应助科研通管家采纳,获得30
4秒前
sxr完成签到,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
上官若男应助我迷了鹿采纳,获得10
5秒前
5秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646