NLOS/LOS Classification by Constructing Indirect Environment Interaction from GNSS Receiver Measurements Using a Transformer-Based Deep Learning Model

全球导航卫星系统应用 非视线传播 计算机科学 人工智能 机器学习 深度学习 特征提取 支持向量机 特征学习 全球定位系统 电信 无线
作者
Zhenni Li,Kungan Zeng,Lujia Wang,Kan Xie,Yuan Rong,Shengli Xie
出处
期刊:Proceedings of the Institute of Navigation ... International Technical Meeting
标识
DOI:10.33012/2023.18657
摘要

The blockage of the direct signal by high-rise buildings degrades the positioning performance of the global navigation satellite system (GNSS) in urban canyons. Traditional methods usually distinguish the line-of-sight (LOS), and non-line-of-sight (NLOS) signals using the satellite's elevation angle or signal strength to mitigate the issue, which cannot obtain satisfactory classification accuracy in complex urban environments. Recently, machine learning-based methods using GNSS measurements have been developed to improve GNSS signal classification. However, dynamic changes in environments and the limited features from the measurements raise a challenge to the classification performance of algorithms. To address the above issues, a transformerbased deep learning model in this paper is proposed for LOS and NLOS signal classification. The innovation of our proposed model is using the self-attention mechanism to construct the indirect environment interaction for learning the representation of environmental information. First, the measurements of captured satellites in the same epoch will be fed into the model. The model's feature extraction layer can learn the fundamental representation. Then, the self-attention module can construct the indirect environment interaction by computing the relevance between the satellites. Finally, the module's output is transferred to the output layer for classification. A comparative experimental study is conducted with real-world data collected in urban canyons. The results demonstrate that our model can keep more than 90% classification accuracy while support vector machine (SVM) and multilayer perception (MLP) decline to about 80% with the sites increasing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pp应助研友_LjbjzL采纳,获得20
1秒前
cccchan完成签到,获得积分20
2秒前
瑞曦完成签到 ,获得积分10
4秒前
5秒前
lu发布了新的文献求助10
5秒前
cccchan发布了新的文献求助10
6秒前
宁宁宁发布了新的文献求助10
6秒前
Tin发布了新的文献求助10
6秒前
en完成签到 ,获得积分10
9秒前
kento应助孤独念柏采纳,获得100
11秒前
一一应助MiYinZzz采纳,获得10
12秒前
Jasper应助luoyulin采纳,获得10
13秒前
罗燕完成签到 ,获得积分10
14秒前
XXX完成签到,获得积分10
15秒前
一一应助Catalina采纳,获得10
15秒前
15秒前
宁宁宁完成签到,获得积分20
15秒前
lu完成签到,获得积分10
21秒前
脾气暴躁的小兔完成签到,获得积分10
21秒前
南笺完成签到 ,获得积分10
25秒前
糖醋鱼发布了新的文献求助10
26秒前
xxxxxj完成签到 ,获得积分10
26秒前
香蕉觅云应助Yaoz采纳,获得10
26秒前
28秒前
Iron_five完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
zhaoxi完成签到 ,获得积分10
30秒前
33秒前
mym发布了新的文献求助10
33秒前
科研通AI2S应助LI采纳,获得10
33秒前
33秒前
33秒前
phoenixtang发布了新的文献求助10
35秒前
cream发布了新的文献求助10
38秒前
38秒前
苏桑焉完成签到 ,获得积分10
38秒前
糖醋鱼完成签到,获得积分20
39秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147980
求助须知:如何正确求助?哪些是违规求助? 2798977
关于积分的说明 7833117
捐赠科研通 2456104
什么是DOI,文献DOI怎么找? 1307127
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620