NLOS/LOS Classification by Constructing Indirect Environment Interaction from GNSS Receiver Measurements Using a Transformer-Based Deep Learning Model

全球导航卫星系统应用 非视线传播 计算机科学 人工智能 机器学习 深度学习 特征提取 支持向量机 特征学习 全球定位系统 电信 无线
作者
Zhenni Li,Kungan Zeng,Lujia Wang,Kan Xie,Yuan Rong,Shengli Xie
出处
期刊:Proceedings of the Institute of Navigation ... International Technical Meeting 被引量:7
标识
DOI:10.33012/2023.18657
摘要

The blockage of the direct signal by high-rise buildings degrades the positioning performance of the global navigation satellite system (GNSS) in urban canyons. Traditional methods usually distinguish the line-of-sight (LOS), and non-line-of-sight (NLOS) signals using the satellite's elevation angle or signal strength to mitigate the issue, which cannot obtain satisfactory classification accuracy in complex urban environments. Recently, machine learning-based methods using GNSS measurements have been developed to improve GNSS signal classification. However, dynamic changes in environments and the limited features from the measurements raise a challenge to the classification performance of algorithms. To address the above issues, a transformerbased deep learning model in this paper is proposed for LOS and NLOS signal classification. The innovation of our proposed model is using the self-attention mechanism to construct the indirect environment interaction for learning the representation of environmental information. First, the measurements of captured satellites in the same epoch will be fed into the model. The model's feature extraction layer can learn the fundamental representation. Then, the self-attention module can construct the indirect environment interaction by computing the relevance between the satellites. Finally, the module's output is transferred to the output layer for classification. A comparative experimental study is conducted with real-world data collected in urban canyons. The results demonstrate that our model can keep more than 90% classification accuracy while support vector machine (SVM) and multilayer perception (MLP) decline to about 80% with the sites increasing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助hif1a采纳,获得10
刚刚
笨笨翰发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
苹果追命完成签到,获得积分10
1秒前
一台小钢炮完成签到,获得积分10
1秒前
YI应助安文采纳,获得10
1秒前
wh发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
2秒前
董晏殊发布了新的文献求助10
3秒前
xx发布了新的文献求助10
3秒前
3秒前
林士完成签到,获得积分10
3秒前
pcy应助可耐的毛衣采纳,获得10
4秒前
爱因斯宣发布了新的文献求助10
4秒前
ghost202关注了科研通微信公众号
4秒前
辛勤饼干发布了新的文献求助10
4秒前
pantio完成签到,获得积分10
4秒前
nzxnzx发布了新的文献求助10
4秒前
小蘑菇应助王小小采纳,获得10
5秒前
Akim应助顺利紫山采纳,获得10
5秒前
5秒前
歡禧发布了新的文献求助10
6秒前
深情安青应助九月采纳,获得10
6秒前
6秒前
Liens发布了新的文献求助10
6秒前
dudu完成签到,获得积分10
7秒前
hdh发布了新的文献求助10
7秒前
replica完成签到,获得积分10
7秒前
火星上问夏完成签到 ,获得积分20
8秒前
晚霞不晚完成签到,获得积分10
8秒前
8秒前
林士发布了新的文献求助10
9秒前
HenryXiao完成签到,获得积分20
9秒前
10秒前
10秒前
可爱芷容发布了新的文献求助10
10秒前
lwl完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650