Target Detection in Sea Clutter with Transformer Neural Network

杂乱 计算机科学 卷积神经网络 人工智能 预处理器 特征提取 模式识别(心理学) 雷达 快速傅里叶变换 人工神经网络 计算复杂性理论 算法 电信
作者
Senlin Tian,Wuqi Wang,Guangxin Ding,Zhiwei Zhang
标识
DOI:10.1109/radar53847.2021.10028317
摘要

Target detection in sea clutter is a significant problem in marine surveillance. The difficulty of radar target detection lies in the low signal-to-clutter ratio (SCR) and insufficient feature extraction brought by handcrafted features. In recent years, with the great success of artificial intelligence in the field of computer vision, there is a trend that researchers start to apply convolutional neural networks to radar target detection. However, most methods based on convolutional neural networks need to convert one-dimensional signals into two-dimensional images for preprocessing, which not only increases the computational burden, but also reduces the accuracy of detection. Therefore, in this paper, we propose a Transformer-based sea clutter target detection method, which takes the collected one-dimensional signal as input directly after FFT preprocessing. And comparing with two-dimensional images, which can extremely reduces the computational cost. Most importantly, Transformer-based network has self-attention mechanism to strengthen target and suppress noise, thus improving the accuracy of target detection. The proposed algorithm is verified on the IPIX datasets, and the results show that the proposed algorithm attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train and inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗向南发布了新的文献求助10
刚刚
duxh123发布了新的文献求助10
刚刚
科研通AI5应助hannah采纳,获得10
刚刚
hhr完成签到 ,获得积分10
1秒前
1秒前
wj发布了新的文献求助10
1秒前
留胡子的忆南完成签到,获得积分10
1秒前
akai应助出门见喜采纳,获得10
3秒前
科研通AI5应助Lwj采纳,获得10
3秒前
童童发布了新的文献求助10
3秒前
xiaoyao完成签到,获得积分10
3秒前
4秒前
csl发布了新的文献求助50
4秒前
刚子发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
彭于晏应助合适寄松采纳,获得20
5秒前
英俊的铭应助虚空的容器采纳,获得10
5秒前
5秒前
曦之南。完成签到,获得积分10
6秒前
李健应助逗逗采纳,获得10
6秒前
汉堡包应助邱小七采纳,获得10
6秒前
奋斗向南完成签到,获得积分10
6秒前
6秒前
科研后腿发布了新的文献求助10
7秒前
7秒前
彭于晏应助serein采纳,获得10
8秒前
TANGLX发布了新的文献求助30
8秒前
8秒前
8秒前
科研通AI5应助牧童1997采纳,获得10
9秒前
等风来完成签到,获得积分10
9秒前
少年弦完成签到,获得积分10
9秒前
9秒前
10秒前
孔德荣发布了新的文献求助10
10秒前
10秒前
10秒前
zzzcccy完成签到 ,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3690915
求助须知:如何正确求助?哪些是违规求助? 3241172
关于积分的说明 9840390
捐赠科研通 2952984
什么是DOI,文献DOI怎么找? 1619041
邀请新用户注册赠送积分活动 765558
科研通“疑难数据库(出版商)”最低求助积分说明 739385