CSGVD: A deep learning approach combining sequence and graph embedding for source code vulnerability detection

嵌入 计算机科学 特征学习 图形 源代码 图嵌入 人工智能 机器学习 理论计算机科学 数据挖掘 操作系统
作者
Wei Tang,Mingwei Tang,Minchao Ban,Ziguo Zhao,Mingjun Feng
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:199: 111623-111623 被引量:51
标识
DOI:10.1016/j.jss.2023.111623
摘要

In order to secure software, it is critical to detect potential vulnerabilities. The performance of traditional static vulnerability detection methods is limited by predefined rules, which rely heavily on the expertise of developers. Existing deep learning-based vulnerability detection models usually use only a single sequence or graph embedding approach to extract vulnerability features. Sequence embedding-based models ignore the structured information inherent in the code, and graph embedding-based models lack effective node and graph embedding methods. As a result, we propose a novel deep learning-based approach, CSGVD (Combining Sequence and Graph embedding for Vulnerability Detection), which considers function-level vulnerability detection as a graph binary classification task. Firstly, we propose a PE-BL module, which inherits and enhances the knowledge from the pre-trained language model. It extracts the code’s local semantic features as node embedding in the control flow graph by using sequence embedding. Secondly, CSGVD uses graph neural networks to extract the structured information of the graph. Finally, we propose a mean biaffine attention pooling, M-BFA, to better aggregate node information as a graph’s feature representation. The experimental results show that CSGVD outperforms the existing state-of-the-art models and obtains 64.46% accuracy on the real-world benchmark dataset from CodeXGLUE for vulnerability detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
超级的洋葱完成签到,获得积分20
2秒前
勇猛的小qin完成签到 ,获得积分10
2秒前
orixero应助欣喜安蕾采纳,获得10
2秒前
jiaping发布了新的文献求助10
2秒前
2秒前
4秒前
Angel发布了新的文献求助10
4秒前
今后应助chiynn采纳,获得10
5秒前
5秒前
6秒前
好滴捏发布了新的文献求助10
7秒前
7秒前
7秒前
852应助热心傲珊采纳,获得10
8秒前
9秒前
9秒前
靓丽的鱼发布了新的文献求助10
9秒前
9秒前
屎壳郎先生完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
gone发布了新的文献求助10
11秒前
DAIXI761419发布了新的文献求助10
12秒前
等待冰之发布了新的文献求助10
12秒前
Akim应助jiaping采纳,获得10
13秒前
Aaaaaa瘾发布了新的文献求助10
13秒前
桂羽安发布了新的文献求助10
14秒前
嘿嘿发布了新的文献求助10
14秒前
隐形曼青应助谦让的口红采纳,获得10
14秒前
15秒前
生动凝旋发布了新的文献求助10
15秒前
Akim应助快乐寄风采纳,获得10
15秒前
风趣小蜜蜂完成签到,获得积分10
15秒前
开放青旋应助coffee采纳,获得10
16秒前
NexusExplorer应助tom采纳,获得10
16秒前
16秒前
石头完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487