CSGVD: A deep learning approach combining sequence and graph embedding for source code vulnerability detection

嵌入 计算机科学 特征学习 图形 源代码 图嵌入 人工智能 机器学习 理论计算机科学 数据挖掘 操作系统
作者
Wei Tang,Mingwei Tang,Minchao Ban,Ziguo Zhao,Mingjun Feng
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:199: 111623-111623 被引量:51
标识
DOI:10.1016/j.jss.2023.111623
摘要

In order to secure software, it is critical to detect potential vulnerabilities. The performance of traditional static vulnerability detection methods is limited by predefined rules, which rely heavily on the expertise of developers. Existing deep learning-based vulnerability detection models usually use only a single sequence or graph embedding approach to extract vulnerability features. Sequence embedding-based models ignore the structured information inherent in the code, and graph embedding-based models lack effective node and graph embedding methods. As a result, we propose a novel deep learning-based approach, CSGVD (Combining Sequence and Graph embedding for Vulnerability Detection), which considers function-level vulnerability detection as a graph binary classification task. Firstly, we propose a PE-BL module, which inherits and enhances the knowledge from the pre-trained language model. It extracts the code’s local semantic features as node embedding in the control flow graph by using sequence embedding. Secondly, CSGVD uses graph neural networks to extract the structured information of the graph. Finally, we propose a mean biaffine attention pooling, M-BFA, to better aggregate node information as a graph’s feature representation. The experimental results show that CSGVD outperforms the existing state-of-the-art models and obtains 64.46% accuracy on the real-world benchmark dataset from CodeXGLUE for vulnerability detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
otto12306完成签到,获得积分10
4秒前
所所应助加百莉采纳,获得10
5秒前
王王完成签到 ,获得积分10
8秒前
哇咔咔完成签到 ,获得积分10
11秒前
哦萨尔完成签到,获得积分10
14秒前
orixero应助is采纳,获得10
20秒前
东方越彬发布了新的文献求助10
21秒前
22秒前
困困羊发布了新的文献求助10
25秒前
29秒前
ff完成签到 ,获得积分10
34秒前
34秒前
乐乐应助暖吱采纳,获得20
40秒前
受伤的平安完成签到,获得积分10
41秒前
ZeKaWa应助linlin采纳,获得10
43秒前
51秒前
55秒前
tianya完成签到,获得积分10
56秒前
57秒前
烟花应助标致的妙晴采纳,获得10
58秒前
浮游应助朴素的松采纳,获得10
1分钟前
1分钟前
1分钟前
加百莉发布了新的文献求助10
1分钟前
cancan发布了新的文献求助10
1分钟前
伯言发布了新的文献求助10
1分钟前
元谷雪应助陈帅采纳,获得10
1分钟前
初雪完成签到,获得积分10
1分钟前
花花花花完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
肉肉完成签到 ,获得积分10
1分钟前
cancan完成签到,获得积分10
1分钟前
zhuangbaobao发布了新的文献求助10
1分钟前
郭6666发布了新的文献求助10
1分钟前
完美世界应助留胡子的火采纳,获得10
1分钟前
脑洞疼应助郭6666采纳,获得10
1分钟前
公冶愚志完成签到,获得积分10
1分钟前
威武的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555