CSGVD: A deep learning approach combining sequence and graph embedding for source code vulnerability detection

嵌入 计算机科学 特征学习 图形 源代码 图嵌入 人工智能 机器学习 理论计算机科学 数据挖掘 操作系统
作者
Wei Tang,Mingwei Tang,Minchao Ban,Ziguo Zhao,Mingjun Feng
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:199: 111623-111623 被引量:51
标识
DOI:10.1016/j.jss.2023.111623
摘要

In order to secure software, it is critical to detect potential vulnerabilities. The performance of traditional static vulnerability detection methods is limited by predefined rules, which rely heavily on the expertise of developers. Existing deep learning-based vulnerability detection models usually use only a single sequence or graph embedding approach to extract vulnerability features. Sequence embedding-based models ignore the structured information inherent in the code, and graph embedding-based models lack effective node and graph embedding methods. As a result, we propose a novel deep learning-based approach, CSGVD (Combining Sequence and Graph embedding for Vulnerability Detection), which considers function-level vulnerability detection as a graph binary classification task. Firstly, we propose a PE-BL module, which inherits and enhances the knowledge from the pre-trained language model. It extracts the code’s local semantic features as node embedding in the control flow graph by using sequence embedding. Secondly, CSGVD uses graph neural networks to extract the structured information of the graph. Finally, we propose a mean biaffine attention pooling, M-BFA, to better aggregate node information as a graph’s feature representation. The experimental results show that CSGVD outperforms the existing state-of-the-art models and obtains 64.46% accuracy on the real-world benchmark dataset from CodeXGLUE for vulnerability detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lytelope完成签到,获得积分10
刚刚
标致夜蕾完成签到,获得积分10
刚刚
Nell发布了新的文献求助10
1秒前
1秒前
2秒前
独特雪碧完成签到,获得积分10
2秒前
2秒前
无花果应助qing采纳,获得10
3秒前
朴实的晓筠完成签到,获得积分10
3秒前
嗷卵犟完成签到,获得积分10
3秒前
zhu完成签到,获得积分10
3秒前
羊咩咩哒发布了新的文献求助10
3秒前
beryl关注了科研通微信公众号
3秒前
305发布了新的文献求助10
4秒前
无花果应助ZinyamHui采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
lytelope发布了新的文献求助10
6秒前
汉堡包应助高兴的向秋采纳,获得10
7秒前
7秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
成就凡双应助科研通管家采纳,获得10
8秒前
8秒前
情怀应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
Yy发布了新的文献求助10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
拼搏剑心完成签到 ,获得积分10
8秒前
元谷雪应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527