CSGVD: A deep learning approach combining sequence and graph embedding for source code vulnerability detection

嵌入 计算机科学 特征学习 图形 源代码 图嵌入 人工智能 机器学习 理论计算机科学 数据挖掘 操作系统
作者
Wei Tang,Mingwei Tang,Minchao Ban,Ziguo Zhao,Mingjun Feng
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:199: 111623-111623 被引量:36
标识
DOI:10.1016/j.jss.2023.111623
摘要

In order to secure software, it is critical to detect potential vulnerabilities. The performance of traditional static vulnerability detection methods is limited by predefined rules, which rely heavily on the expertise of developers. Existing deep learning-based vulnerability detection models usually use only a single sequence or graph embedding approach to extract vulnerability features. Sequence embedding-based models ignore the structured information inherent in the code, and graph embedding-based models lack effective node and graph embedding methods. As a result, we propose a novel deep learning-based approach, CSGVD (Combining Sequence and Graph embedding for Vulnerability Detection), which considers function-level vulnerability detection as a graph binary classification task. Firstly, we propose a PE-BL module, which inherits and enhances the knowledge from the pre-trained language model. It extracts the code’s local semantic features as node embedding in the control flow graph by using sequence embedding. Secondly, CSGVD uses graph neural networks to extract the structured information of the graph. Finally, we propose a mean biaffine attention pooling, M-BFA, to better aggregate node information as a graph’s feature representation. The experimental results show that CSGVD outperforms the existing state-of-the-art models and obtains 64.46% accuracy on the real-world benchmark dataset from CodeXGLUE for vulnerability detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ltx发布了新的文献求助10
2秒前
Zlinco完成签到,获得积分10
2秒前
3秒前
mavissss发布了新的文献求助10
3秒前
英姑应助英勇真采纳,获得10
4秒前
5秒前
Active完成签到,获得积分10
5秒前
小马甲应助优雅的听兰采纳,获得10
6秒前
7秒前
隐形曼青应助mavissss采纳,获得10
7秒前
CHENG_2025应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
佳佳应助科研通管家采纳,获得50
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
Psychexin应助科研通管家采纳,获得30
9秒前
9秒前
佳佳应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
11秒前
CipherSage应助哒哒猪采纳,获得10
11秒前
candoubinbin完成签到,获得积分10
12秒前
ruann发布了新的文献求助10
12秒前
科研通AI2S应助舒芙蕾采纳,获得10
12秒前
13秒前
斯文败类应助研友_ZA2jm8采纳,获得20
13秒前
里里完成签到,获得积分10
15秒前
16秒前
华仔应助不想读书采纳,获得10
17秒前
18秒前
yyy发布了新的文献求助10
20秒前
20秒前
流落尘世完成签到,获得积分10
22秒前
飘逸小懒猪应助知来者采纳,获得80
23秒前
天天快乐应助岚12采纳,获得10
24秒前
24秒前
25秒前
25秒前
panhang发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450