清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Visual classification of pressure injury stages for nurses: A deep learning model applying modern convolutional neural networks

卷积神经网络 深度学习 可用性 人工智能 观察研究 病历 压力伤 医学 计算机科学 集合(抽象数据类型) 人工神经网络 机器学习 急症护理 医疗保健 急诊医学 外科 内科学 人机交互 经济 程序设计语言 经济增长
作者
Suryang Seo,Jaeyeon Kang,In Hyang Eom,Hyeji Song,Jun Ho Park,Young‐Soo Lee,Haeyoung Lee
出处
期刊:Journal of Advanced Nursing [Wiley]
卷期号:79 (8): 3047-3056 被引量:6
标识
DOI:10.1111/jan.15584
摘要

Abstract Aims To develop a deep learning model for pressure injury stages classification based on real‐world photographs and compare its performance with that of clinical nurses to seek the opportunity of its application in clinical settings. Design This was a retrospective observational study using a deep learning model. Review Methods A plastic surgeon and two wound care nurses labelled a set of pressure injury images. We applied several modern Convolutional Neural Networks architectures and compared the performances with those of clinical nurses. Data Sources We retrospectively analysed the electronic medical records of hospitalized patients between January 2019 and April 2021. Results A set of 2464 pressure injury images were compiled and analysed. Using EfficientNet, in classifying pressure injury images, the macro F1‐score was calculated to be 0.8941, and the average performance of two experienced nurses was reported as 0.8781. Conclusion A deep learning model for classifying pressure injury images by stages was successfully developed, and the performance of the model was compared with that of experienced nurses. The classification model developed in this study is expected to help less‐experienced nurses or those working in under‐resourced healthcare settings determine the stages of pressure injury. Impact Our deep learning model can minimize discrepancies in nurses' assessment of classifying pressure injury stages. Follow‐up studies on improving the performance of deep learning models using modern techniques and clinical usability will lead to improved quality of care among patients with pressure injury. No Patient or Public Contribution Patients or the public were not involved in our research's design, conduct, reporting or dissemination plans because this was a retrospective study that used electronic medical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rick关注了科研通微信公众号
7秒前
边曦发布了新的文献求助10
12秒前
哌替啶完成签到 ,获得积分10
27秒前
Rick发布了新的文献求助10
29秒前
Boren完成签到,获得积分10
2分钟前
敏感的山柏完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
完美世界应助zzf采纳,获得10
3分钟前
玩命的毛衣完成签到 ,获得积分10
3分钟前
小强完成签到 ,获得积分10
4分钟前
5分钟前
zzf发布了新的文献求助10
5分钟前
5分钟前
5分钟前
CodeCraft应助zzx采纳,获得10
5分钟前
5分钟前
5分钟前
YYMM发布了新的文献求助10
5分钟前
鉴定为学计算学的完成签到,获得积分10
6分钟前
宇文非笑完成签到 ,获得积分10
7分钟前
时间煮雨我煮鱼完成签到,获得积分10
7分钟前
8分钟前
雨朵发布了新的文献求助10
8分钟前
充电宝应助zzf采纳,获得10
8分钟前
lyy完成签到 ,获得积分20
9分钟前
9分钟前
zzf发布了新的文献求助10
9分钟前
mf2002mf完成签到 ,获得积分10
9分钟前
Panda完成签到,获得积分10
9分钟前
含蓄文博完成签到 ,获得积分10
10分钟前
奶盐牙牙乐完成签到 ,获得积分10
11分钟前
元神完成签到 ,获得积分10
11分钟前
ling361完成签到,获得积分10
11分钟前
zzx完成签到,获得积分10
11分钟前
11分钟前
zzx发布了新的文献求助10
11分钟前
lixuebin完成签到 ,获得积分10
12分钟前
zhanglh完成签到 ,获得积分10
14分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294595
求助须知:如何正确求助?哪些是违规求助? 2930487
关于积分的说明 8446147
捐赠科研通 2602765
什么是DOI,文献DOI怎么找? 1420704
科研通“疑难数据库(出版商)”最低求助积分说明 660658
邀请新用户注册赠送积分活动 643433