Prospective Real-Time Validation of a Lung Ultrasound Deep Learning Model in the ICU

医学 金标准(测试) 前瞻性队列研究 重症监护 病危 观察研究 急诊医学 肺超声 重症监护室 超声波 人工智能 重症监护医学 放射科 内科学 计算机科学
作者
Chintan Dave,Daniel Wu,Jared Tschirhart,Delaney Smith,Blake VanBerlo,Jason Deglint,Faraz Ali,Rushil Chaudhary,Bennett VanBerlo,Alex Ford,Marwan A Rahman,Joseph McCauley,Benjamin Wu,Jordan Ho,Brian Li,Robert Arntfield
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:51 (2): 301-309
标识
DOI:10.1097/ccm.0000000000005759
摘要

To evaluate the accuracy of a bedside, real-time deployment of a deep learning (DL) model capable of distinguishing between normal (A line pattern) and abnormal (B line pattern) lung parenchyma on lung ultrasound (LUS) in critically ill patients.Prospective, observational study evaluating the performance of a previously trained LUS DL model. Enrolled patients received a LUS examination with simultaneous DL model predictions using a portable device. Clip-level model predictions were analyzed and compared with blinded expert review for A versus B line pattern. Four prediction thresholding approaches were applied to maximize model sensitivity and specificity at bedside.Academic ICU.One-hundred critically ill patients admitted to ICU, receiving oxygen therapy, and eligible for respiratory imaging were included. Patients who were unstable or could not undergo an LUS examination were excluded.None.A total of 100 unique ICU patients (400 clips) were enrolled from two tertiary-care sites. Fifty-six patients were mechanically ventilated. When compared with gold standard expert annotation, the real-time inference yielded an accuracy of 95%, sensitivity of 93%, and specificity of 96% for identification of the B line pattern. Varying prediction thresholds showed that real-time modification of sensitivity and specificity according to clinical priorities is possible.A previously validated DL classification model performs equally well in real-time at the bedside when platformed on a portable device. As the first study to test the feasibility and performance of a DL classification model for LUS in a dedicated ICU environment, our results justify further inquiry into the impact of employing real-time automation of medical imaging into the care of the critically ill.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Zz采纳,获得30
刚刚
杳鸢应助起风了采纳,获得10
1秒前
眼里有光的阿墨完成签到 ,获得积分10
6秒前
8秒前
美满傀斗关注了科研通微信公众号
8秒前
LH1993发布了新的文献求助30
9秒前
自洽发布了新的文献求助30
12秒前
小哈发布了新的文献求助10
13秒前
17秒前
19秒前
无花果应助归海含烟采纳,获得10
21秒前
Kizi2021发布了新的文献求助10
24秒前
美满傀斗发布了新的文献求助10
26秒前
我是老大应助aaa采纳,获得10
27秒前
皮皮发布了新的文献求助10
27秒前
27秒前
30秒前
32秒前
Rye发布了新的文献求助10
34秒前
杳鸢应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
搜集达人应助科研通管家采纳,获得10
35秒前
岛err应助科研通管家采纳,获得10
35秒前
杳鸢应助科研通管家采纳,获得10
35秒前
科目三应助科研通管家采纳,获得10
35秒前
积极的忆曼完成签到,获得积分10
36秒前
39秒前
大虫完成签到,获得积分10
41秒前
aaa发布了新的文献求助10
42秒前
丙队长完成签到,获得积分10
45秒前
48秒前
52秒前
54秒前
57秒前
Joker完成签到,获得积分10
1分钟前
Yifan2024应助suodeheng采纳,获得30
1分钟前
鲁杨发布了新的文献求助10
1分钟前
Akim应助淡定的翩跹采纳,获得10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376088
求助须知:如何正确求助?哪些是违规求助? 2992348
关于积分的说明 8750471
捐赠科研通 2676687
什么是DOI,文献DOI怎么找? 1466201
科研通“疑难数据库(出版商)”最低求助积分说明 678196
邀请新用户注册赠送积分活动 669801