环境科学
水溶液
放射性废物
计算机科学
废物管理
工程类
化学
物理化学
作者
Heyao Liu,Lizhi Tong,Minhua Su,Diyun Chen,Gang Song,Ying Zhou
标识
DOI:10.1016/j.scitotenv.2023.161664
摘要
The widespread adoption of nuclear energy has increased the amount of radioactive cesium (Cs) that is discharged into waste streams, which can have environmental risks. In this paper, we provide a comprehensive summary of current advances in aqueous Cs removal by employing a bibliometric analysis. We collected 1580 articles related to aqueous Cs treatment that were published on the Web of Science database between 2012 and 2022. By applying bibliometric analysis combined with network analysis, we revealed the research distribution, knowledge base, research hotspots, and cutting-edge technologies in the field of aqueous Cs removal. Our findings indicate that China, Japan, and South Korea are the most productive countries with respect to Cs removal research. In addition, both historic events and environmental threats might have contributed to research in Asian countries having a higher focus on Cs removal as well as strong international cooperation between Asian countries. A detailed keyword analysis reveals the main knowledge base for aqueous Cs removal and highlights the potential of the adsorption-based method for treating Cs contamination. Furthermore, the results reveal that exploration of functional materials is a popular research topic in the field of Cs removal. Since 2012, novel materials, including Prussian blue, graphene oxide, hydrogel and nanocomposites, have been widely investigated because of their high capacity for Cs removal. On the basis of the detailed information, we report the latest research trends on aqueous Cs removal, and propose future research directions and describe the challenges related to effective Cs treatment. This scientometric review provides insights into current research hotspots and cutting-edge trends in addition to contributing to the development of this crucial research field.
科研通智能强力驱动
Strongly Powered by AbleSci AI