卡尔曼滤波器
弹道
计算机科学
全球定位系统
力矩(物理)
噪音(视频)
还原(数学)
领域(数学)
智能交通系统
降噪
滤波器(信号处理)
控制理论(社会学)
实时计算
人工智能
计算机视觉
工程类
数学
电信
运输工程
物理
几何学
控制(管理)
经典力学
天文
纯数学
图像(数学)
作者
Jiaming Sun,Xu Sun,Zhonghan Zhan,Jiaxu Zhou
标识
DOI:10.1109/ccis57298.2022.10016320
摘要
We propose a method for vehicle trajectory restoration in the field of intelligent transportation. We have a large number of data from Internet of Vehicle (IoV), including all information of vehicle status at every moment. First, we preprocess the data from IoV, perform data reduction and filter out the data that meets the requirements, and then build a Kalman filter trajectory model for noise removal. We conducted numerical experiments on the actual data from IoV and found that it is closer to the actual road, which eliminates the problem of GPS data deviation.
科研通智能强力驱动
Strongly Powered by AbleSci AI