已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comparative Analytical Review on Machine Learning Methods in Drugtarget Interactions Prediction

计算机科学 机器学习 人工智能 优势和劣势 领域(数学) 分类 选择(遗传算法) 数据挖掘 数学 认识论 哲学 纯数学
作者
Zahra Nikraftar,Mohammad Reza Keyvanpour
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:19 (5): 325-355 被引量:4
标识
DOI:10.2174/1573409919666230111164340
摘要

Background: Predicting drug-target interactions (DTIs) is an important topic of study in the field of drug discovery and development. Since DTI prediction in vitro studies is very expensive and time-consuming, computational techniques for predicting drug-target interactions have been introduced successfully to solve these problems and have received extensive attention. Objective: In this paper, we provided a summary of databases that are useful in DTI prediction and intend to concentrate on machine learning methods as a chemogenomic approach in drug discovery. Unlike previous surveys, we propose a comparative analytical framework based on the evaluation criteria. Methods: In our suggested framework, there are three stages to follow: First, we present a comprehensive categorization of machine learning-based techniques as a chemogenomic approach for drug-target interaction prediction problems; Second, to evaluate the proposed classification, several general criteria are provided; Third, unlike other surveys, according to the evaluation criteria introduced in the previous stage, a comparative analytical evaluation is performed for each approach. Results: This systematic research covers the earliest, most recent, and outstanding techniques in the DTI prediction problem and identifies the advantages and weaknesses of each approach separately. Additionally, it can be helpful in the effective selection and improvement of DTI prediction techniques, which is the main superiority of the proposed framework. Conclusion: This paper gives a thorough overview to serve as a guide and reference for other researchers by providing an analytical framework which can help to select, compare, and improve DTI prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽凡霜完成签到 ,获得积分20
1秒前
野草发布了新的文献求助10
2秒前
利多卡因完成签到 ,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
猪猪hero应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
18秒前
元气发发酱完成签到,获得积分10
18秒前
甜美冷雁完成签到,获得积分10
21秒前
忐忑的果汁完成签到,获得积分10
21秒前
xitao发布了新的文献求助10
25秒前
哈哈发布了新的文献求助10
26秒前
28秒前
29秒前
WYN完成签到 ,获得积分10
31秒前
嘟嘟发布了新的文献求助10
32秒前
叶思杰发布了新的文献求助10
34秒前
34秒前
34秒前
35秒前
今夜有雨完成签到 ,获得积分10
36秒前
36秒前
tdtk发布了新的文献求助10
37秒前
1234发布了新的文献求助10
37秒前
fjfzfisher发布了新的文献求助10
38秒前
38秒前
higgs完成签到,获得积分10
40秒前
40秒前
jiafang发布了新的文献求助10
41秒前
肖礼成发布了新的文献求助10
43秒前
脑洞疼应助CABBAGE采纳,获得30
44秒前
bylawa发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
47秒前
敏感人杰发布了新的文献求助10
48秒前
LILYpig完成签到 ,获得积分10
50秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524500
关于积分的说明 11221687
捐赠科研通 3261917
什么是DOI,文献DOI怎么找? 1800975
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320