A Comparative Analytical Review on Machine Learning Methods in Drugtarget Interactions Prediction

计算机科学 机器学习 人工智能 优势和劣势 领域(数学) 分类 选择(遗传算法) 数据挖掘 数学 认识论 哲学 纯数学
作者
Zahra Nikraftar,Mohammad Reza Keyvanpour
出处
期刊:Current Computer - Aided Drug Design [Bentham Science]
卷期号:19 (5): 325-355 被引量:4
标识
DOI:10.2174/1573409919666230111164340
摘要

Background: Predicting drug-target interactions (DTIs) is an important topic of study in the field of drug discovery and development. Since DTI prediction in vitro studies is very expensive and time-consuming, computational techniques for predicting drug-target interactions have been introduced successfully to solve these problems and have received extensive attention. Objective: In this paper, we provided a summary of databases that are useful in DTI prediction and intend to concentrate on machine learning methods as a chemogenomic approach in drug discovery. Unlike previous surveys, we propose a comparative analytical framework based on the evaluation criteria. Methods: In our suggested framework, there are three stages to follow: First, we present a comprehensive categorization of machine learning-based techniques as a chemogenomic approach for drug-target interaction prediction problems; Second, to evaluate the proposed classification, several general criteria are provided; Third, unlike other surveys, according to the evaluation criteria introduced in the previous stage, a comparative analytical evaluation is performed for each approach. Results: This systematic research covers the earliest, most recent, and outstanding techniques in the DTI prediction problem and identifies the advantages and weaknesses of each approach separately. Additionally, it can be helpful in the effective selection and improvement of DTI prediction techniques, which is the main superiority of the proposed framework. Conclusion: This paper gives a thorough overview to serve as a guide and reference for other researchers by providing an analytical framework which can help to select, compare, and improve DTI prediction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
MyXu完成签到,获得积分10
1秒前
YanamiAnna发布了新的文献求助30
1秒前
1秒前
1秒前
3秒前
3秒前
3秒前
zz发布了新的文献求助10
3秒前
4秒前
一期一会发布了新的文献求助10
4秒前
4秒前
Hello应助小小果妈采纳,获得10
4秒前
零柒发布了新的文献求助10
4秒前
陆程文完成签到,获得积分10
5秒前
于是乎完成签到,获得积分10
5秒前
5秒前
egomarine完成签到,获得积分10
5秒前
星辰大海应助Toby采纳,获得10
6秒前
7秒前
cosimax发布了新的文献求助20
8秒前
8秒前
英吉利25发布了新的文献求助30
8秒前
馨雨清滢发布了新的文献求助10
8秒前
江户川新一完成签到,获得积分20
8秒前
xzj完成签到,获得积分10
8秒前
9秒前
陌上花开发布了新的文献求助10
9秒前
爱爱是吧完成签到,获得积分10
9秒前
xuan发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
李健应助amy采纳,获得10
10秒前
10秒前
10秒前
10秒前
步真宁发布了新的文献求助20
11秒前
11秒前
WJJ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769365
求助须知:如何正确求助?哪些是违规求助? 5579538
关于积分的说明 15421436
捐赠科研通 4903042
什么是DOI,文献DOI怎么找? 2638103
邀请新用户注册赠送积分活动 1586002
关于科研通互助平台的介绍 1541075