Innovative model of surface-enhanced Raman spectroscopy for exosomes identification: An approach for the diagnosis of hepatocellular carcinoma

肝细胞癌 拉曼光谱 表面增强拉曼光谱 微泡 丙型肝炎病毒 外体 医学 诊断模型 化学 病毒学 内科学 病毒 生物化学 计算机科学 光学 拉曼散射 数据挖掘 小RNA 物理 基因
作者
Amr Elkady,Marwa Hassan,Mohamed F. Hagag,Eman El‐Ahwany,Osama Helal,Mona Zoheiry,Mahmoud I. Abdalla,Mohamed Elzallat
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:540: 117228-117228 被引量:3
标识
DOI:10.1016/j.cca.2023.117228
摘要

The current hepatocellular carcinoma (HCC) diagnostic approaches lack adequate sensitivity and specificity. So, this study was performed to develop an innovative model of surface-enhanced Raman spectroscopy (SERS) that can detect HCC patients by identifying the circulating tumor-derived exosomes.Sixty participants, including normal controls, hepatitis C virus (HCV)-infected patients, and HCV-associated HCC patients, had their whole blood samples and exosomes separated from these samples analyzed using Raman spectroscopy (RS). A revolutionary model of SERS, based on an innovative glass and nano-gold, was designed to directly identify exosomes. Its measurements were simulated by Comsol Multiphysics (5.6).The RS examination of the whole blood samples revealed no Raman peaks. Yet, the isolated exosomes from these samples generated Raman peaks at 400 and 1000 cm-1 wavenumbers in the HCV group. A Raman shift was detected in HCC patients at 812, 852, and 878 cm-1 wavenumbers with intensity ratios of 120, 130, and 60, respectively. The RS had a sensitivity and specificity of 95 % and 100 %, respectively, for detecting HCC. However, the newly-designed SERS was able to identify the HCC-derived exosomes, at 812 and 878 cm-1 wavenumbers, with boosted intensity ratios of 9*106 and 4*106, respectively, in the whole blood samples.The newly-developed SERS model has the potential to detect HCC patients through recognizing the tumor-derived exosomes non-invasively, with high accuracy, and without the need for laborious exosomal separation. Nonetheless, bringing this technology into the clinic demands the establishment of spectral databases and their validation using the current gold standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亭子发布了新的文献求助10
刚刚
李白发布了新的文献求助10
2秒前
qcy72完成签到,获得积分10
3秒前
5秒前
5秒前
清新的音响完成签到 ,获得积分10
6秒前
Fif28678完成签到 ,获得积分10
7秒前
工藤新一发布了新的文献求助30
8秒前
赫天德发布了新的文献求助10
8秒前
8秒前
不想读书发布了新的文献求助10
10秒前
Zeeshan发布了新的文献求助10
11秒前
11秒前
Fif28678关注了科研通微信公众号
12秒前
zho应助水博士采纳,获得10
14秒前
18秒前
20秒前
科研通AI2S应助boymin2015采纳,获得10
21秒前
23秒前
23秒前
wweiweili发布了新的文献求助10
24秒前
25秒前
不帛就完成签到,获得积分10
27秒前
Tolan泥巴发布了新的文献求助10
28秒前
乐至上完成签到,获得积分10
28秒前
cjw发布了新的文献求助10
28秒前
青枝发布了新的文献求助20
29秒前
31秒前
吴婷完成签到 ,获得积分10
32秒前
33秒前
33秒前
36秒前
EdenLee完成签到 ,获得积分10
37秒前
打打应助妉甛采纳,获得10
38秒前
Martin419发布了新的文献求助10
39秒前
39秒前
赫天德完成签到,获得积分10
39秒前
五十一完成签到 ,获得积分10
40秒前
41秒前
41秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387376
求助须知:如何正确求助?哪些是违规求助? 3000163
关于积分的说明 8789703
捐赠科研通 2686013
什么是DOI,文献DOI怎么找? 1471428
科研通“疑难数据库(出版商)”最低求助积分说明 680251
邀请新用户注册赠送积分活动 673060