Underwater Bubble Plume Recognition Algorithm Based on Multi-Feature Fusion Understanding

水下 人工智能 计算机科学 稳健性(进化) 特征提取 计算机视觉 模式识别(心理学) 气泡 卷积神经网络 特征(语言学) 轮廓波 算法 地质学 小波变换 基因 海洋学 哲学 生物化学 小波 语言学 并行计算 化学
作者
Xue Yang,Shiming Sun
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:38 (11)
标识
DOI:10.1142/s0218001424550097
摘要

Underwater bubble plume images contain a wealth of information on wave field and flow characteristics, which can provide valuable research data for marine development, environmental protection, and underwater surveys. However, based on fusing image features and wave field environment features, identifying accurately the underwater bubble plume is still very difficult. In order to improve the accuracy and robustness of bubble plume identification in complex underwater environments, an underwater bubble plume recognition algorithm based on multi-feature fusion understanding is proposed. In this paper, a weight-independent dual-channel residual convolutional neural network (CNN) for feature extraction of the original optical images and the nonsubsampled contourlet transform (NSCT) low-frequency images, and the multi-scale composite feature map groups are generated. Then adaptive fusion is performed based on the feature contribution of the target in different types of images. Next, logical region of interest (ROI) masks are generated by the attention mechanism and superimposed on the fused image to further highlight the target features. Finally, the multi-scale dual-channel fused feature maps containing ROI masks are used for underwater bubble plume target recognition. The experimental results show that the designed recognition network can effectively fuse the features of the original optical images and the NSCT low-frequency imagers, improve the depth of information fusion, and retain the target texture features and the morphological features while reducing the interference of the background information, and have good recognition accuracy and robustness for multi-scale bubble targets in the underwater environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦一德完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
慕青应助求神拜佛采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
skycause完成签到,获得积分10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
philip发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
爆米花应助北陆玄枵采纳,获得10
3秒前
Hello应助积雨云采纳,获得30
3秒前
积极问晴发布了新的文献求助10
4秒前
Owen应助sty采纳,获得10
5秒前
在水一方应助11采纳,获得10
5秒前
6秒前
闫上走完成签到,获得积分10
7秒前
JamesPei应助aaa采纳,获得10
8秒前
小六子发布了新的文献求助10
8秒前
在水一方应助松林采纳,获得10
8秒前
平淡的谷兰完成签到 ,获得积分10
9秒前
Steplan完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627069
求助须知:如何正确求助?哪些是违规求助? 4712976
关于积分的说明 14961029
捐赠科研通 4783415
什么是DOI,文献DOI怎么找? 2554637
邀请新用户注册赠送积分活动 1516274
关于科研通互助平台的介绍 1476543