Underwater Bubble Plume Recognition Algorithm Based on Multi-Feature Fusion Understanding

水下 人工智能 计算机科学 稳健性(进化) 特征提取 计算机视觉 模式识别(心理学) 气泡 卷积神经网络 特征(语言学) 轮廓波 算法 地质学 小波变换 生物化学 化学 小波 基因 哲学 并行计算 海洋学 语言学
作者
Xue Yang,Shiming Sun
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:38 (11)
标识
DOI:10.1142/s0218001424550097
摘要

Underwater bubble plume images contain a wealth of information on wave field and flow characteristics, which can provide valuable research data for marine development, environmental protection, and underwater surveys. However, based on fusing image features and wave field environment features, identifying accurately the underwater bubble plume is still very difficult. In order to improve the accuracy and robustness of bubble plume identification in complex underwater environments, an underwater bubble plume recognition algorithm based on multi-feature fusion understanding is proposed. In this paper, a weight-independent dual-channel residual convolutional neural network (CNN) for feature extraction of the original optical images and the nonsubsampled contourlet transform (NSCT) low-frequency images, and the multi-scale composite feature map groups are generated. Then adaptive fusion is performed based on the feature contribution of the target in different types of images. Next, logical region of interest (ROI) masks are generated by the attention mechanism and superimposed on the fused image to further highlight the target features. Finally, the multi-scale dual-channel fused feature maps containing ROI masks are used for underwater bubble plume target recognition. The experimental results show that the designed recognition network can effectively fuse the features of the original optical images and the NSCT low-frequency imagers, improve the depth of information fusion, and retain the target texture features and the morphological features while reducing the interference of the background information, and have good recognition accuracy and robustness for multi-scale bubble targets in the underwater environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LY完成签到,获得积分10
3秒前
黄婷发布了新的文献求助30
3秒前
Ariel完成签到,获得积分10
4秒前
清平道人应助andrele采纳,获得30
4秒前
米奇完成签到,获得积分10
5秒前
KinKrit完成签到 ,获得积分10
7秒前
麻薯包完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
Zczzx完成签到,获得积分10
9秒前
李健的粉丝团团长应助Dean采纳,获得10
10秒前
12秒前
再说完成签到,获得积分20
12秒前
噜噜噜完成签到,获得积分10
12秒前
机智的思远完成签到 ,获得积分10
12秒前
大气的雪冥完成签到,获得积分10
13秒前
科研通AI2S应助不远采纳,获得10
13秒前
14秒前
sword发布了新的文献求助10
14秒前
大方半莲发布了新的文献求助10
14秒前
烟花应助ei123采纳,获得10
15秒前
19应助那只兔子采纳,获得10
15秒前
乐观道之完成签到,获得积分10
16秒前
16秒前
ruo发布了新的文献求助10
17秒前
18秒前
19秒前
微毒麻醉完成签到,获得积分10
19秒前
大胆的青槐完成签到,获得积分10
20秒前
20秒前
21秒前
爆米花应助再说采纳,获得10
22秒前
充电宝应助大方半莲采纳,获得10
23秒前
壮观以松发布了新的文献求助10
24秒前
Dean发布了新的文献求助10
24秒前
ii发布了新的文献求助10
26秒前
CipherSage应助Cape采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306741
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497451
捐赠科研通 2614749
什么是DOI,文献DOI怎么找? 1428486
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259