已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Underwater Bubble Plume Recognition Algorithm Based on Multi-Feature Fusion Understanding

水下 人工智能 计算机科学 稳健性(进化) 特征提取 计算机视觉 模式识别(心理学) 气泡 卷积神经网络 特征(语言学) 轮廓波 算法 地质学 小波变换 基因 海洋学 哲学 生物化学 小波 语言学 并行计算 化学
作者
Xue Yang,Shiming Sun
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:38 (11)
标识
DOI:10.1142/s0218001424550097
摘要

Underwater bubble plume images contain a wealth of information on wave field and flow characteristics, which can provide valuable research data for marine development, environmental protection, and underwater surveys. However, based on fusing image features and wave field environment features, identifying accurately the underwater bubble plume is still very difficult. In order to improve the accuracy and robustness of bubble plume identification in complex underwater environments, an underwater bubble plume recognition algorithm based on multi-feature fusion understanding is proposed. In this paper, a weight-independent dual-channel residual convolutional neural network (CNN) for feature extraction of the original optical images and the nonsubsampled contourlet transform (NSCT) low-frequency images, and the multi-scale composite feature map groups are generated. Then adaptive fusion is performed based on the feature contribution of the target in different types of images. Next, logical region of interest (ROI) masks are generated by the attention mechanism and superimposed on the fused image to further highlight the target features. Finally, the multi-scale dual-channel fused feature maps containing ROI masks are used for underwater bubble plume target recognition. The experimental results show that the designed recognition network can effectively fuse the features of the original optical images and the NSCT low-frequency imagers, improve the depth of information fusion, and retain the target texture features and the morphological features while reducing the interference of the background information, and have good recognition accuracy and robustness for multi-scale bubble targets in the underwater environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助加油采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
斯文败类应助hotdx采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
CipherSage应助Rabbithouse采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
科目三应助机智老黑采纳,获得10
4秒前
NexusExplorer应助我是鸡汤采纳,获得10
4秒前
7秒前
chenyuns发布了新的文献求助10
9秒前
zwq发布了新的文献求助20
9秒前
Annieran完成签到,获得积分10
10秒前
Charon关注了科研通微信公众号
10秒前
rek完成签到,获得积分20
10秒前
11秒前
11秒前
寒冷黎云发布了新的文献求助10
11秒前
12秒前
Handsome毛关注了科研通微信公众号
12秒前
噜啦啦完成签到 ,获得积分10
12秒前
汉堡包应助青羽采纳,获得10
13秒前
千帆发布了新的文献求助10
14秒前
lyfsci发布了新的文献求助10
15秒前
JJ完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770