亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A systematic review of trustworthy artificial intelligence applications in natural disasters

自然灾害 计算机科学 应急管理 数据科学 斯科普斯 预警系统 大数据 人工智能 数据挖掘 地理 政治学 气象学 电信 梅德林 法学
作者
A. S. Albahri,Yahya Layth Khaleel,Mustafa Abdulfattah Habeeb,Reem D. Ismail,Qabas A. Hameed,Muhammet Deveci,Raad Z. Homod,O. S. Albahri,A. H. Alamoodi,Laith Alzubaidi
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:118: 109409-109409 被引量:32
标识
DOI:10.1016/j.compeleceng.2024.109409
摘要

Artificial intelligence (AI) holds significant promise for advancing natural disaster management through the use of predictive models that analyze extensive datasets, identify patterns, and forecast potential disasters. These models facilitate proactive measures such as early warning systems (EWSs), evacuation planning, and resource allocation, addressing the substantial challenges associated with natural disasters. This study offers a comprehensive exploration of trustworthy AI applications in natural disasters, encompassing disaster management, risk assessment, and disaster prediction. This research is underpinned by an extensive review of reputable sources, including Science Direct (SD), Scopus, IEEE Xplore (IEEE), and Web of Science (WoS). Three queries were formulated to retrieve 981 papers from the earliest documented scientific production until February 2024. After meticulous screening, deduplication, and application of the inclusion and exclusion criteria, 108 studies were included in the quantitative synthesis. This study provides a specific taxonomy of AI applications in natural disasters and explores the motivations, challenges, recommendations, and limitations of recent advancements. It also offers an overview of recent techniques and developments in disaster management using explainable artificial intelligence (XAI), data fusion, data mining, machine learning (ML), deep learning (DL), fuzzy logic, and multicriteria decision-making (MCDM). This systematic contribution addresses seven open issues and provides critical solutions through essential insights, laying the groundwork for various future works in trustworthiness AI-based natural disaster management. Despite the potential benefits, challenges persist in the application of AI to natural disaster management. In these contexts, this study identifies several unused and used areas in natural disaster-based AI theory, collects the disaster datasets, ML, and DL techniques, and offers a valuable XAI approach to unravel the complex relationships and dynamics involved and the utilization of data fusion techniques in decision-making processes related to natural disasters. Finally, the study extensively analyzed ethical considerations, bias, and consequences in natural disaster-based AI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
Jennywrz发布了新的文献求助10
27秒前
orixero应助Jennywrz采纳,获得10
33秒前
34秒前
Stone发布了新的文献求助10
40秒前
52秒前
科研通AI2S应助渊思采纳,获得10
1分钟前
小乔应助yi一一采纳,获得10
1分钟前
1分钟前
渊思发布了新的文献求助10
1分钟前
1分钟前
的微博发布了新的文献求助10
2分钟前
2分钟前
Stone发布了新的文献求助10
2分钟前
科目三应助驭剑士采纳,获得10
2分钟前
2分钟前
驭剑士发布了新的文献求助10
2分钟前
上官凯凯完成签到 ,获得积分10
2分钟前
Stone发布了新的文献求助10
2分钟前
3分钟前
Stone发布了新的文献求助10
3分钟前
3分钟前
Stone发布了新的文献求助10
3分钟前
Stone发布了新的文献求助10
4分钟前
樱桃猴子完成签到,获得积分10
4分钟前
竹子完成签到,获得积分10
4分钟前
Stone发布了新的文献求助10
4分钟前
wanci应助科研通管家采纳,获得10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
5分钟前
Stone发布了新的文献求助10
5分钟前
景胜杰发布了新的文献求助10
5分钟前
Stone发布了新的文献求助10
6分钟前
6分钟前
伏城完成签到 ,获得积分10
6分钟前
Vincy发布了新的文献求助10
6分钟前
Vincy完成签到,获得积分10
6分钟前
13656479046完成签到,获得积分10
7分钟前
Stone发布了新的文献求助10
7分钟前
无花果应助不爱科研的猪采纳,获得10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3596026
求助须知:如何正确求助?哪些是违规求助? 3162950
关于积分的说明 9542814
捐赠科研通 2867233
什么是DOI,文献DOI怎么找? 1575645
邀请新用户注册赠送积分活动 740270
科研通“疑难数据库(出版商)”最低求助积分说明 724067