Blind source separation algorithm for noisy hydroacoustic signals based on decoupled convolutional neural networks

盲信号分离 卷积神经网络 算法 分离(统计) 计算机科学 源分离 语音识别 模式识别(心理学) 人工智能 机器学习 电信 频道(广播)
作者
Shuang Li,Zehui Yu,Peidong Wang,Guiqi Sun,Jingjing Wang
出处
期刊:Ocean Engineering [Elsevier]
卷期号:308: 118188-118188
标识
DOI:10.1016/j.oceaneng.2024.118188
摘要

Wireless communication technology has been widely used in marine engineering, marine ranching and Marine environmental monitoring. However, structural redundancy and functional confusion exist in applying neural networks in signal separation technology in underwater communication environments, which can result in a slower rate of signal separation and lead to confusion of parameters during transfer learning. Based on this, an end-to-end, internal functionally structured decoupled neural network (D-CNN) blind source separation (BSS) model is proposed in this paper, which can realize a neural network BSS algorithm with a well-defined structure and function. The one-dimensional convolutional neural network layer is used in algorithm to automatically extract observed signal's features, based on the features, and there are two generation modules of separation matrix and scaling coefficients. Then the two modules can be used to separate the observed signal and adjust the signal coefficients to obtain the separated signal. Finally the transfer learning technique is used to generalize the model, which reduces the transfer cost of the model in different application scenarios. Experimental results show that when the communication distance is set to 0.02 km–2 km, the MSE of independent signal and related signal can be reduced by 14.24% and 14.95% respectively compared with the nearest Neural FCA algorithm. The results prove that the proposed algorithm can accurately estimate the source signal and improve the signal reception quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助ajiduo采纳,获得10
1秒前
nan完成签到,获得积分10
3秒前
月月鸟完成签到,获得积分10
3秒前
justin发布了新的文献求助10
4秒前
lemon发布了新的文献求助10
4秒前
4秒前
5秒前
damieob完成签到,获得积分20
5秒前
angan完成签到,获得积分10
5秒前
月月鸟发布了新的文献求助20
6秒前
6秒前
poorzz完成签到,获得积分10
6秒前
承序完成签到,获得积分10
7秒前
华仔应助yf采纳,获得10
8秒前
GanGan发布了新的文献求助10
8秒前
LUCKY发布了新的文献求助10
10秒前
黄龙完成签到,获得积分10
10秒前
黑骑士完成签到,获得积分10
11秒前
隐形曼青应助wwww采纳,获得10
11秒前
Youth发布了新的文献求助10
12秒前
14秒前
15秒前
17秒前
18秒前
ff不吃芹菜完成签到,获得积分10
19秒前
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
丘比特应助周周采纳,获得10
22秒前
LHD完成签到,获得积分20
23秒前
jade发布了新的文献求助10
23秒前
26秒前
27秒前
CipherSage应助苏满天采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112