A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize

杀虫剂 兽药 生物技术 代谢组学 支持向量机 班级(哲学) 载体(分子生物学) 兽医学 生物 计算机科学 医学 生物信息学 人工智能 农学 遗传学 基因 重组DNA
作者
Weifeng Xue,Fang Li,Xuemei Li,Ying Liu
出处
期刊:Molecules [MDPI AG]
卷期号:29 (13): 3026-3026
标识
DOI:10.3390/molecules29133026
摘要

The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography–tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method’s practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
dengsiqian发布了新的文献求助10
3秒前
不安的嘉熙完成签到,获得积分10
3秒前
Kenny发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
李楼村完成签到,获得积分10
4秒前
h丶小虫完成签到,获得积分10
4秒前
腼腆的耷发布了新的文献求助10
5秒前
zhou发布了新的文献求助10
5秒前
亳亳发布了新的文献求助10
5秒前
Genius发布了新的文献求助10
5秒前
李老头发布了新的文献求助10
5秒前
6秒前
情怀应助邻街采纳,获得10
7秒前
7秒前
gl7183完成签到,获得积分10
7秒前
7秒前
8秒前
自由的聋五完成签到,获得积分10
8秒前
jackmilton完成签到,获得积分10
8秒前
深渊与海发布了新的文献求助10
8秒前
xuyw应助岩中花述采纳,获得10
8秒前
9秒前
西瓜发布了新的文献求助10
10秒前
科研通AI6应助风中泰坦采纳,获得10
10秒前
852应助晴朗采纳,获得10
11秒前
Aurora发布了新的文献求助10
11秒前
11秒前
壹吾鱼完成签到,获得积分10
11秒前
12秒前
152van发布了新的文献求助10
12秒前
小衫生完成签到,获得积分20
12秒前
ZhangHaoYuan完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906