A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize

杀虫剂 兽药 生物技术 代谢组学 支持向量机 班级(哲学) 载体(分子生物学) 兽医学 生物 计算机科学 医学 生物信息学 人工智能 农学 遗传学 基因 重组DNA
作者
Weifeng Xue,Fang Li,Xuemei Li,Ying Liu
出处
期刊:Molecules [MDPI AG]
卷期号:29 (13): 3026-3026
标识
DOI:10.3390/molecules29133026
摘要

The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography–tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method’s practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏素肃发布了新的文献求助10
刚刚
qifei完成签到 ,获得积分10
刚刚
舍瓦完成签到,获得积分10
1秒前
why完成签到,获得积分10
1秒前
木林森发布了新的文献求助10
1秒前
烂漫凡柔发布了新的文献求助10
1秒前
传奇3应助22采纳,获得10
2秒前
胡晓平完成签到,获得积分10
3秒前
Summer完成签到,获得积分10
3秒前
鲤鱼雨泽完成签到,获得积分10
3秒前
wzhnb完成签到,获得积分10
4秒前
nojego完成签到,获得积分10
4秒前
倩倩完成签到,获得积分10
4秒前
hhh完成签到 ,获得积分10
4秒前
苏苏完成签到 ,获得积分10
4秒前
ShanYexia完成签到,获得积分10
5秒前
星辰大海应助轻松豌豆采纳,获得10
5秒前
xyj完成签到,获得积分10
5秒前
上官若男应助jinzhituoyan采纳,获得10
6秒前
李健的小迷弟应助wzhnb采纳,获得10
8秒前
9秒前
WZL完成签到,获得积分10
9秒前
xiekunwhy完成签到,获得积分10
9秒前
大魔王完成签到 ,获得积分10
10秒前
啤酒半斤完成签到,获得积分10
10秒前
11秒前
淡然冬灵发布了新的文献求助10
11秒前
Ming完成签到,获得积分10
13秒前
durance完成签到,获得积分10
13秒前
tiger完成签到,获得积分10
13秒前
西因应助小新麻麻采纳,获得10
14秒前
九月发布了新的文献求助10
15秒前
刘大白发布了新的文献求助10
15秒前
隐形曼青应助jiaman1031采纳,获得10
15秒前
16秒前
宜菏发布了新的文献求助20
17秒前
18秒前
追寻翩跹完成签到,获得积分10
18秒前
cc951229完成签到,获得积分10
19秒前
孙一完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144