A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize

杀虫剂 兽药 生物技术 代谢组学 支持向量机 班级(哲学) 载体(分子生物学) 兽医学 生物 计算机科学 医学 生物信息学 人工智能 农学 遗传学 基因 重组DNA
作者
Weifeng Xue,Fang Li,Xuemei Li,Ying Liu
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:29 (13): 3026-3026
标识
DOI:10.3390/molecules29133026
摘要

The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography–tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method’s practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观若烟发布了新的文献求助10
刚刚
zhhl2006完成签到,获得积分10
刚刚
zhouzhou完成签到,获得积分10
刚刚
啊宁完成签到 ,获得积分10
刚刚
JoshuaChen发布了新的文献求助10
刚刚
开朗满天完成签到 ,获得积分10
1秒前
1秒前
1秒前
3秒前
赘婿应助Max采纳,获得10
3秒前
3秒前
Erislastem完成签到,获得积分10
3秒前
volcanoes完成签到,获得积分10
3秒前
蘇q完成签到 ,获得积分10
3秒前
Encore发布了新的文献求助10
3秒前
慈祥的翠梅完成签到,获得积分10
3秒前
4秒前
李爱国应助王不王采纳,获得10
4秒前
苏silence发布了新的文献求助10
4秒前
万能图书馆应助爱因斯宣采纳,获得10
4秒前
今后应助YZzzJ采纳,获得10
4秒前
如意雅山发布了新的文献求助10
4秒前
桢桢树发布了新的文献求助10
5秒前
戚薇发布了新的文献求助10
5秒前
5秒前
杰杰完成签到,获得积分10
6秒前
SciGPT应助gnr2000采纳,获得30
6秒前
我没那么郝完成签到,获得积分10
6秒前
亚琳发布了新的文献求助10
6秒前
6秒前
你想不想变成一粒芝麻完成签到,获得积分10
7秒前
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582