A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize

杀虫剂 兽药 生物技术 代谢组学 支持向量机 班级(哲学) 载体(分子生物学) 兽医学 生物 计算机科学 医学 生物信息学 人工智能 农学 遗传学 基因 重组DNA
作者
Weifeng Xue,Fang Li,Xuemei Li,Ying Liu
出处
期刊:Molecules [MDPI AG]
卷期号:29 (13): 3026-3026
标识
DOI:10.3390/molecules29133026
摘要

The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography–tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method’s practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚空的容器完成签到,获得积分10
刚刚
刚刚
dangdang123发布了新的文献求助10
刚刚
刚刚
liu完成签到,获得积分20
2秒前
南南发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
斯文败类应助安蓝采纳,获得10
5秒前
5秒前
英俊的铭应助虚空的容器采纳,获得10
6秒前
7秒前
小鲸鱼发布了新的文献求助30
7秒前
daisy发布了新的文献求助10
8秒前
肱二头肌完成签到 ,获得积分10
8秒前
9秒前
9秒前
dengcl-jack完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
小雨完成签到,获得积分10
11秒前
12秒前
邵璞完成签到,获得积分10
12秒前
sad发布了新的文献求助10
13秒前
张大头发布了新的文献求助10
13秒前
zjgjnu发布了新的文献求助20
13秒前
共享精神应助季文婷采纳,获得10
13秒前
JamesPei应助yuyuyu采纳,获得10
13秒前
15秒前
ysx完成签到,获得积分10
16秒前
安蓝发布了新的文献求助10
16秒前
16秒前
斯文无敌发布了新的文献求助10
17秒前
柑橘完成签到 ,获得积分10
17秒前
现代雁桃完成签到,获得积分10
18秒前
18秒前
周艳鸿完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642428
求助须知:如何正确求助?哪些是违规求助? 4758826
关于积分的说明 15017538
捐赠科研通 4801013
什么是DOI,文献DOI怎么找? 2566317
邀请新用户注册赠送积分活动 1524459
关于科研通互助平台的介绍 1483969