A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize

杀虫剂 兽药 生物技术 代谢组学 支持向量机 班级(哲学) 载体(分子生物学) 兽医学 生物 计算机科学 医学 生物信息学 人工智能 农学 遗传学 基因 重组DNA
作者
Weifeng Xue,Fang Li,Xuemei Li,Ying Liu
出处
期刊:Molecules [MDPI AG]
卷期号:29 (13): 3026-3026
标识
DOI:10.3390/molecules29133026
摘要

The contamination risks of plant-derived foods due to the co-existence of pesticides and veterinary drugs (P&VDs) have not been fully understood. With an increasing number of unexpected P&VDs illegally added to foods, it is essential to develop a non-targeted screening method for P&VDs for their comprehensive risk assessment. In this study, a modified support vector machine (SVM)-assisted metabolomics approach by screening eligible variables to represent marker compounds of 124 multi-class P&VDs in maize was developed based on the results of high-performance liquid chromatography–tandem mass spectrometry. Principal component analysis and orthogonal partial least squares discriminant analysis indicate the existence of variables with obvious inter-group differences, which were further investigated by S-plot plots, permutation tests, and variable importance in projection to obtain eligible variables. Meanwhile, SVM recursive feature elimination under the radial basis function was employed to obtain the weight-squared values of all the variables ranging from large to small for the screening of eligible variables as well. Pairwise t-tests and fold changes of concentration were further employed to confirm these eligible variables to represent marker compounds. The results indicate that 120 out of 124 P&VDs can be identified by the SVM-assisted metabolomics method, while only 109 P&VDs can be found by the metabolomics method alone, implying that SVM can promote the screening accuracy of the metabolomics method. In addition, the method’s practicability was validated by the real contaminated maize samples, which provide a bright application prospect in non-targeted screening of contaminants. The limits of detection for 120 P&VDs in maize samples were calculated to be 0.3~1.5 µg/kg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳的扬发布了新的文献求助20
刚刚
wangziyi发布了新的文献求助10
1秒前
2秒前
adore发布了新的文献求助10
2秒前
爆米花应助阳pipi采纳,获得10
2秒前
打打应助迷你的夏云采纳,获得10
3秒前
星辰大海应助bb采纳,获得10
3秒前
小马甲应助傲娇的安筠采纳,获得10
3秒前
4秒前
必发sci的小王完成签到,获得积分10
4秒前
上下发布了新的文献求助10
4秒前
失忆的金鱼关注了科研通微信公众号
5秒前
化工牛马发布了新的文献求助10
6秒前
6秒前
aldehyde完成签到,获得积分0
6秒前
封典完成签到,获得积分10
6秒前
6秒前
wangziyi完成签到,获得积分10
6秒前
平常亦凝发布了新的文献求助10
7秒前
无花果应助荀语山采纳,获得10
8秒前
渤海少年发布了新的文献求助10
9秒前
9秒前
orixero应助必发sci的小王采纳,获得10
9秒前
WXJ关闭了WXJ文献求助
9秒前
10秒前
10秒前
ren发布了新的文献求助10
11秒前
李爱国应助柳绿柳采纳,获得10
12秒前
爆米花应助悦耳的扬采纳,获得10
13秒前
14秒前
wuhen发布了新的文献求助10
14秒前
赛赛完成签到 ,获得积分10
14秒前
妮妮完成签到 ,获得积分10
14秒前
14秒前
上官若男应助贪玩的笑阳采纳,获得10
14秒前
14秒前
干净利落发布了新的文献求助30
15秒前
重要的水杯完成签到,获得积分10
15秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258708
求助须知:如何正确求助?哪些是违规求助? 2900498
关于积分的说明 8310704
捐赠科研通 2569753
什么是DOI,文献DOI怎么找? 1395982
科研通“疑难数据库(出版商)”最低求助积分说明 653340
邀请新用户注册赠送积分活动 631241