Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning

一般化 人工智能 计算机科学 图形 机器学习 抗菌肽 相似性(几何) 计算生物学 氨基酸 人工神经网络 理论计算机科学 生物 数学 遗传学 生物化学 数学分析 图像(数学)
作者
Greneter Cordoves‐Delgado,César R. García‐Jacas
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4310-4321 被引量:10
标识
DOI:10.1021/acs.jcim.3c02061
摘要

Currently, antimicrobial resistance constitutes a serious threat to human health. Drugs based on antimicrobial peptides (AMPs) constitute one of the alternatives to address it. Shallow and deep learning (DL)-based models have mainly been built from amino acid sequences to predict AMPs. Recent advances in tertiary (3D) structure prediction have opened new opportunities in this field. In this sense, models based on graphs derived from predicted peptide structures have recently been proposed. However, these models are not in correspondence with state-of-the-art approaches to codify evolutionary information, and, in addition, they are memory- and time-consuming because depend on multiple sequence alignment. Herein, we presented a framework to create alignment-free models based on graph representations generated from ESMFold-predicted peptide structures, whose nodes are characterized with amino acid-level evolutionary information derived from the Evolutionary Scale Modeling (ESM-2) models. A graph attention network (GAT) was implemented to assess the usefulness of the framework in the AMP classification. To this end, a set comprised of 67,058 peptides was used. It was demonstrated that the proposed methodology allowed to build GAT models with generalization abilities consistently better than 20 state-of-the-art non-DL-based and DL-based models. The best GAT models were developed using evolutionary information derived from the 36- and 33-layer ESM-2 models. Similarity studies showed that the best-built GAT models codified different chemical spaces, and thus they were fused to significantly improve the classification. In general, the results suggest that esm-AxP-GDL is a promissory tool to develop good, structure-dependent, and alignment-free models that can be successfully applied in the screening of large data sets. This framework should not only be useful to classify AMPs but also for modeling other peptide and protein activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助欣喜战斗机采纳,获得10
刚刚
4秒前
4秒前
谦让的冰海完成签到 ,获得积分10
4秒前
科研通AI2S应助美好焦采纳,获得10
5秒前
长情琦发布了新的文献求助10
8秒前
科研通AI2S应助zhdsunshine采纳,获得10
8秒前
ZhimingCai发布了新的文献求助10
8秒前
Ava应助开朗穆采纳,获得10
8秒前
小二郎应助漾漾采纳,获得10
8秒前
深情安青应助虚拟的平安采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
瘦瘦一德完成签到,获得积分10
11秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
Yu发布了新的文献求助10
20秒前
小乾完成签到 ,获得积分10
21秒前
桂花酒酿完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
上官若男应助芦苇儿采纳,获得10
25秒前
小乐完成签到 ,获得积分10
26秒前
眠眠羊完成签到,获得积分10
31秒前
31秒前
NexusExplorer应助非斐采纳,获得10
31秒前
33秒前
sanwan发布了新的文献求助10
33秒前
34秒前
林仔完成签到 ,获得积分10
34秒前
35秒前
计时器响了完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
38秒前
39秒前
TIWOSS发布了新的文献求助10
42秒前
yunian完成签到 ,获得积分10
43秒前
44秒前
budingman发布了新的文献求助10
45秒前
Akim应助陌陌采纳,获得10
47秒前
量子星尘发布了新的文献求助10
47秒前
48秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664632
求助须知:如何正确求助?哪些是违规求助? 3224535
关于积分的说明 9758095
捐赠科研通 2934477
什么是DOI,文献DOI怎么找? 1606882
邀请新用户注册赠送积分活动 758897
科研通“疑难数据库(出版商)”最低求助积分说明 735053