Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 艺术 文学类 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研糊涂神完成签到,获得积分10
1秒前
narssu发布了新的文献求助10
1秒前
bkagyin应助复杂的一一采纳,获得10
1秒前
JeremyChi完成签到,获得积分10
2秒前
研友_VZG7GZ应助美好斓采纳,获得10
2秒前
Jessica发布了新的文献求助20
2秒前
zzk发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
我要发sci发布了新的文献求助10
5秒前
宁学者发布了新的文献求助10
5秒前
5秒前
5秒前
田様应助前前前世采纳,获得30
6秒前
小马甲应助王爱灿采纳,获得10
6秒前
XSY发布了新的文献求助10
6秒前
Owen应助wait123采纳,获得10
7秒前
袁鹏飞完成签到,获得积分10
8秒前
微笑枫发布了新的文献求助10
9秒前
EMMA发布了新的文献求助10
9秒前
10秒前
lixl0725发布了新的文献求助10
10秒前
10秒前
10秒前
坚强的广山应助八点点采纳,获得200
10秒前
supertkeb应助立军采纳,获得10
11秒前
竹音发布了新的文献求助10
11秒前
Orange应助开心便当采纳,获得10
12秒前
墨上筠完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
zzzzoe完成签到,获得积分10
14秒前
14秒前
wanci应助dddkcjm采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945