Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 文学类 艺术 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助ZsJJkk采纳,获得20
刚刚
styrene应助mfcare采纳,获得10
1秒前
打打应助安琪采纳,获得30
1秒前
田様应助陶醉鞅采纳,获得10
1秒前
隐形曼青应助Xiao采纳,获得10
2秒前
3秒前
不吃晚饭完成签到,获得积分10
3秒前
缓慢手机完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
领导范儿应助莽哥采纳,获得10
4秒前
哎哟我去完成签到,获得积分10
4秒前
自觉博超完成签到,获得积分10
4秒前
爆米花应助香蕉雅香采纳,获得10
5秒前
6秒前
YeY关注了科研通微信公众号
6秒前
suga'完成签到 ,获得积分10
7秒前
awu完成签到 ,获得积分10
7秒前
lyn应助automan采纳,获得10
7秒前
8秒前
8秒前
cc发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
花花123发布了新的文献求助10
10秒前
NexusExplorer应助程洁素采纳,获得10
10秒前
科研通AI6应助年轻迪奥采纳,获得10
11秒前
Healer完成签到,获得积分10
12秒前
12秒前
西瓜完成签到 ,获得积分10
13秒前
Liyuan发布了新的文献求助10
14秒前
14秒前
14秒前
无花果应助二悬铃木采纳,获得10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406