已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 文学类 艺术 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月关注了科研通微信公众号
2秒前
Alger完成签到,获得积分10
2秒前
4秒前
Virtual应助年轻秀采纳,获得20
5秒前
9秒前
9秒前
shuixingji发布了新的文献求助10
12秒前
只想发财完成签到 ,获得积分10
16秒前
18秒前
18秒前
麦兜完成签到 ,获得积分10
21秒前
hhhh完成签到,获得积分10
22秒前
李健的小迷弟应助哒哒哒采纳,获得10
22秒前
chens627发布了新的文献求助10
22秒前
玻璃弹珠完成签到,获得积分10
22秒前
22秒前
AoAoo发布了新的文献求助10
23秒前
23秒前
搜集达人应助火龙果采纳,获得10
25秒前
kenti2023完成签到 ,获得积分10
25秒前
26秒前
26秒前
jimskylxk完成签到,获得积分10
28秒前
苏苏发布了新的文献求助10
28秒前
Lsy发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
轻松的芯完成签到 ,获得积分0
32秒前
巫马百招发布了新的文献求助10
34秒前
34秒前
tang完成签到,获得积分10
35秒前
35秒前
WSYang完成签到,获得积分10
37秒前
火龙果发布了新的文献求助10
38秒前
39秒前
无言发布了新的文献求助10
41秒前
42秒前
痴情的萃发布了新的文献求助10
42秒前
25486发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539162
求助须知:如何正确求助?哪些是违规求助? 3973401
关于积分的说明 12308742
捐赠科研通 3640250
什么是DOI,文献DOI怎么找? 2004416
邀请新用户注册赠送积分活动 1039790
科研通“疑难数据库(出版商)”最低求助积分说明 928967