Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 文学类 艺术 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HWX发布了新的文献求助10
2秒前
3秒前
3秒前
Zehn发布了新的文献求助10
4秒前
HL773发布了新的文献求助10
5秒前
5秒前
田様应助山山而川采纳,获得10
5秒前
黎明森发布了新的文献求助10
6秒前
呆萌安萱发布了新的文献求助10
7秒前
星辰大海应助踏实香岚采纳,获得10
7秒前
8秒前
传奇3应助meng采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得30
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Jasper应助WWW采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
12秒前
12秒前
共享精神应助威武绝山采纳,获得10
13秒前
13秒前
Awkward完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265116
求助须知:如何正确求助?哪些是违规求助? 4425209
关于积分的说明 13775716
捐赠科研通 4300491
什么是DOI,文献DOI怎么找? 2359831
邀请新用户注册赠送积分活动 1355852
关于科研通互助平台的介绍 1317181