Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 文学类 艺术 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄雨辰发布了新的文献求助10
刚刚
nino发布了新的文献求助10
1秒前
golds发布了新的文献求助10
1秒前
热心雨南完成签到,获得积分10
1秒前
3秒前
bean关注了科研通微信公众号
3秒前
领导范儿应助琳琳采纳,获得20
3秒前
君君完成签到,获得积分10
4秒前
4秒前
情怀应助ml采纳,获得10
4秒前
菜鸟队长完成签到,获得积分10
5秒前
火星上映易完成签到 ,获得积分10
5秒前
5秒前
木木杉完成签到 ,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
Jasper应助yunchaozhang采纳,获得10
8秒前
发100篇SCI发布了新的文献求助10
9秒前
聪明日记本完成签到,获得积分10
9秒前
9秒前
风汐5423发布了新的文献求助10
9秒前
9秒前
zhaoyuwei发布了新的文献求助10
10秒前
qinghe发布了新的文献求助10
10秒前
11秒前
12秒前
binana完成签到 ,获得积分10
12秒前
CC完成签到 ,获得积分10
12秒前
12秒前
13秒前
田様应助陈pc采纳,获得10
13秒前
友好的咖啡豆完成签到,获得积分10
13秒前
14秒前
wyuk发布了新的文献求助10
14秒前
bkagyin应助里lilili采纳,获得10
14秒前
开心凌柏完成签到,获得积分10
16秒前
16秒前
YT发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251653
求助须知:如何正确求助?哪些是违规求助? 4415731
关于积分的说明 13747051
捐赠科研通 4287495
什么是DOI,文献DOI怎么找? 2352481
邀请新用户注册赠送积分活动 1349315
关于科研通互助平台的介绍 1308791