Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 艺术 文学类 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Hollen完成签到 ,获得积分10
1秒前
慕青应助学术蠕虫采纳,获得10
2秒前
2秒前
叶子发布了新的文献求助10
3秒前
orangel完成签到,获得积分10
4秒前
半壶月色半边天完成签到 ,获得积分10
5秒前
tmpstlml发布了新的文献求助10
5秒前
6秒前
6秒前
不安饼干完成签到 ,获得积分10
8秒前
活泼的飞鸟完成签到,获得积分10
8秒前
9秒前
xuyun发布了新的文献求助10
9秒前
9秒前
zzcres完成签到,获得积分10
11秒前
eeeee完成签到 ,获得积分10
11秒前
乐观德地完成签到,获得积分10
12秒前
大个应助yf_zhu采纳,获得10
12秒前
llk发布了新的文献求助10
13秒前
一只大肥猫完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
15秒前
15秒前
科研通AI5应助GGG采纳,获得10
16秒前
16秒前
18秒前
Ann发布了新的文献求助20
18秒前
18秒前
buno应助duxinyue采纳,获得10
18秒前
xlj发布了新的文献求助10
19秒前
19秒前
可爱的函函应助zhen采纳,获得10
20秒前
研友_VZG7GZ应助dingdong采纳,获得10
21秒前
21秒前
李成恩完成签到 ,获得积分10
22秒前
心碎的黄焖鸡完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808