Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization

强化学习 计算机科学 交叉口(航空) 对偶(语法数字) 信号(编程语言) 人工神经网络 交通信号灯 实时计算 工程类 人工智能 运输工程 文学类 艺术 程序设计语言
作者
Gongquan Zhang,Fangrong Chang,Helai Huang,Zilong Zhou
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 2056-2056 被引量:5
标识
DOI:10.3390/math12132056
摘要

To improve traffic efficiency, adaptive traffic signal control (ATSC) systems have been widely developed. However, few studies have proactively optimized the air environmental issues in the development of ATSC. To fill this research gap, this study proposes an optimized ATSC algorithm to take into consideration both traffic efficiency and decarbonization. The proposed algorithm is developed based on the deep reinforcement learning (DRL) framework with dual goals (DRL-DG) for traffic control system optimization. A novel network structure combining Convolutional Neural Networks and Long Short-Term Memory Networks is designed to map the intersection traffic state to a Q-value, accelerating the learning process. The reward mechanism involves a multi-objective optimization function, employing the entropy weight method to balance the weights among dual goals. Based on a representative intersection in Changsha, Hunan Province, China, a simulated intersection scenario is constructed to train and test the proposed algorithm. The result shows that the ATSC system optimized by the proposed DRL-DG results in a reduction of more than 71% in vehicle waiting time and 46% in carbon emissions compared to traditional traffic signal control systems. It converges faster and achieves a balanced dual-objective optimization compared to the prevailing DRL-based ATSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweets完成签到,获得积分10
1秒前
LL发布了新的文献求助30
1秒前
1秒前
3秒前
www完成签到,获得积分10
4秒前
5秒前
5秒前
222发布了新的文献求助10
5秒前
黄量杰成发布了新的文献求助10
6秒前
7秒前
7秒前
sansan完成签到 ,获得积分10
8秒前
manru发布了新的文献求助10
8秒前
8秒前
9秒前
ASIS完成签到,获得积分10
9秒前
刘祥发布了新的文献求助10
9秒前
虚拟的柠檬完成签到,获得积分10
10秒前
11秒前
run发布了新的文献求助50
12秒前
赵乂发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
lyt发布了新的文献求助10
13秒前
yunyueqixun完成签到 ,获得积分10
13秒前
倪侃发布了新的文献求助10
13秒前
时567完成签到,获得积分10
13秒前
manru完成签到,获得积分10
13秒前
14秒前
sure发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
16秒前
小郑不睡觉完成签到 ,获得积分10
16秒前
16秒前
17秒前
nenoaowu发布了新的文献求助10
17秒前
我是老大应助黄量杰成采纳,获得200
18秒前
Orange应助闲听花落采纳,获得10
18秒前
浮游应助222采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981