Low-power multimode-fiber projector outperforms shallow-neural-network classifiers

多模光纤 投影机 功率(物理) 纤维 计算机科学 人工神经网络 人工智能 物理 光纤 材料科学 电信 量子力学 复合材料
作者
Daniele Ancora,Matteo Negri,Antonio Gianfrate,D. Trypogeorgos,Lorenzo Dominici,D. Sanvitto,Federico Ricci‐Tersenghi,Luca Leuzzi
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6)
标识
DOI:10.1103/physrevapplied.21.064027
摘要

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission-matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that this improved performance could be due to the hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multimode fibers generalize better to previously unseen data, positioning them as promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蝶完成签到 ,获得积分10
2秒前
小鲸鱼发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
立冬发布了新的文献求助10
5秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI2S应助雪白的青柏采纳,获得10
9秒前
希望天下0贩的0应助xxx采纳,获得10
9秒前
9秒前
123456冬瓜完成签到 ,获得积分10
9秒前
Anthocyanidin发布了新的文献求助10
10秒前
10秒前
zdy发布了新的文献求助10
10秒前
无极微光应助花椒小透明采纳,获得20
12秒前
丰富的松鼠完成签到 ,获得积分10
13秒前
丘比特应助果汁鱼采纳,获得10
13秒前
SMZ应助含蓄青雪采纳,获得10
14秒前
深海蓝鱼发布了新的文献求助10
16秒前
16秒前
17秒前
姜姜发布了新的文献求助10
18秒前
香蕉觅云应助狂野小鸭子采纳,获得10
19秒前
20秒前
语安发布了新的文献求助10
21秒前
懒兔包完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
kk发布了新的文献求助10
24秒前
25秒前
Xhhaai应助yshj采纳,获得10
26秒前
Zircon完成签到 ,获得积分10
26秒前
26秒前
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777790
求助须知:如何正确求助?哪些是违规求助? 5635616
关于积分的说明 15446728
捐赠科研通 4909661
什么是DOI,文献DOI怎么找? 2641847
邀请新用户注册赠送积分活动 1589769
关于科研通互助平台的介绍 1544261