Low-power multimode-fiber projector outperforms shallow-neural-network classifiers

多模光纤 投影机 功率(物理) 纤维 计算机科学 人工神经网络 人工智能 物理 光纤 材料科学 电信 量子力学 复合材料
作者
Daniele Ancora,Matteo Negri,Antonio Gianfrate,D. Trypogeorgos,Lorenzo Dominici,D. Sanvitto,Federico Ricci‐Tersenghi,Luca Leuzzi
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6)
标识
DOI:10.1103/physrevapplied.21.064027
摘要

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission-matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that this improved performance could be due to the hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multimode fibers generalize better to previously unseen data, positioning them as promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lyy发布了新的文献求助10
2秒前
慢慢完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
CaiJJ发布了新的文献求助10
3秒前
3秒前
欢喜的小天鹅完成签到 ,获得积分10
4秒前
zyxhaian完成签到,获得积分10
6秒前
7秒前
MGzsss发布了新的文献求助10
7秒前
LG关闭了LG文献求助
7秒前
研途发布了新的文献求助10
9秒前
10秒前
寻绿完成签到,获得积分10
10秒前
11秒前
11秒前
白菜完成签到,获得积分10
11秒前
高挑的若雁完成签到 ,获得积分10
12秒前
研友_qZ6qAn发布了新的文献求助10
14秒前
丘比特应助研途采纳,获得10
14秒前
15秒前
研友_pnx7JL完成签到,获得积分10
15秒前
尘_发布了新的文献求助10
15秒前
万能图书馆应助rwewe采纳,获得10
17秒前
一十六发布了新的文献求助10
19秒前
19秒前
小乔应助鼻揩了转去采纳,获得10
20秒前
干净寻冬应助entropy采纳,获得10
20秒前
务实凡灵完成签到,获得积分10
20秒前
温山先生完成签到,获得积分10
21秒前
刘营营完成签到,获得积分10
21秒前
研酒生完成签到 ,获得积分10
22秒前
不会取名完成签到,获得积分10
22秒前
浮游应助PGZ采纳,获得10
22秒前
24秒前
墨绝发布了新的文献求助10
25秒前
小蘑菇应助MGzsss采纳,获得10
26秒前
26秒前
26秒前
糊涂涂完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836