Low-power multimode-fiber projector outperforms shallow-neural-network classifiers

多模光纤 投影机 功率(物理) 纤维 计算机科学 人工神经网络 人工智能 物理 光纤 材料科学 电信 量子力学 复合材料
作者
Daniele Ancora,Matteo Negri,Antonio Gianfrate,D. Trypogeorgos,Lorenzo Dominici,D. Sanvitto,Federico Ricci‐Tersenghi,Luca Leuzzi
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6)
标识
DOI:10.1103/physrevapplied.21.064027
摘要

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission-matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that this improved performance could be due to the hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multimode fibers generalize better to previously unseen data, positioning them as promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zard完成签到,获得积分20
刚刚
飘逸蘑菇完成签到 ,获得积分10
刚刚
Jared应助Dong采纳,获得50
刚刚
1秒前
赘婿应助灵巧胜采纳,获得10
2秒前
李lili完成签到,获得积分10
3秒前
清脆的孤菱完成签到 ,获得积分10
3秒前
威武的初曼完成签到 ,获得积分10
3秒前
英姑应助兜里有芒果采纳,获得30
3秒前
天天快乐应助1984673171采纳,获得10
3秒前
JamesPei应助Shens采纳,获得10
4秒前
天使在云端完成签到,获得积分10
4秒前
4秒前
顺利紫山完成签到,获得积分10
4秒前
yl关闭了yl文献求助
4秒前
碧海流花完成签到,获得积分10
4秒前
6秒前
6秒前
Lutte001完成签到,获得积分10
7秒前
7秒前
小黑子石刘完成签到,获得积分10
7秒前
大个应助nannannan采纳,获得10
7秒前
jlk完成签到,获得积分10
8秒前
8秒前
8秒前
玛琪玛小姐的狗完成签到,获得积分10
8秒前
ymxq完成签到,获得积分10
8秒前
8秒前
wang发布了新的文献求助50
9秒前
COIN_77完成签到 ,获得积分10
9秒前
9秒前
gzhoax完成签到,获得积分10
9秒前
wjd完成签到 ,获得积分10
9秒前
9秒前
瓶里岑完成签到,获得积分10
10秒前
10秒前
chris完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765854
求助须知:如何正确求助?哪些是违规求助? 5563108
关于积分的说明 15410479
捐赠科研通 4900307
什么是DOI,文献DOI怎么找? 2636383
邀请新用户注册赠送积分活动 1584596
关于科研通互助平台的介绍 1539869