Low-power multimode-fiber projector outperforms shallow-neural-network classifiers

多模光纤 投影机 功率(物理) 纤维 计算机科学 人工神经网络 人工智能 物理 光纤 材料科学 电信 量子力学 复合材料
作者
Daniele Ancora,Matteo Negri,Antonio Gianfrate,D. Trypogeorgos,Lorenzo Dominici,D. Sanvitto,Federico Ricci‐Tersenghi,Luca Leuzzi
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6)
标识
DOI:10.1103/physrevapplied.21.064027
摘要

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission-matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that this improved performance could be due to the hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multimode fibers generalize better to previously unseen data, positioning them as promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
高大的老头完成签到,获得积分10
2秒前
2秒前
3秒前
蓝色斑马发布了新的文献求助10
3秒前
如约而至完成签到,获得积分10
4秒前
flh完成签到,获得积分10
4秒前
4秒前
4秒前
dslhxwlkm发布了新的文献求助10
5秒前
qiu发布了新的文献求助20
5秒前
5秒前
like发布了新的文献求助10
5秒前
6秒前
日富一日发布了新的文献求助10
6秒前
随便完成签到,获得积分10
6秒前
114514完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助30
8秒前
宇月幸成发布了新的文献求助10
8秒前
9秒前
9秒前
惔惔惔发布了新的文献求助10
9秒前
马子妍发布了新的文献求助10
10秒前
叮咚完成签到,获得积分10
10秒前
Owen应助汝桢采纳,获得10
10秒前
10秒前
11秒前
邱扬智发布了新的文献求助10
11秒前
冰火油条虾完成签到 ,获得积分10
11秒前
CodeCraft应助文献来来来采纳,获得10
11秒前
wang发布了新的文献求助10
12秒前
12秒前
kaworul发布了新的文献求助10
12秒前
jin发布了新的文献求助10
12秒前
共享精神应助hiliar采纳,获得10
13秒前
会飞的鱼完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894