Low-power multimode-fiber projector outperforms shallow-neural-network classifiers

多模光纤 投影机 功率(物理) 纤维 计算机科学 人工神经网络 人工智能 物理 光纤 材料科学 电信 量子力学 复合材料
作者
Daniele Ancora,Matteo Negri,Antonio Gianfrate,D. Trypogeorgos,Lorenzo Dominici,D. Sanvitto,Federico Ricci‐Tersenghi,Luca Leuzzi
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6)
标识
DOI:10.1103/physrevapplied.21.064027
摘要

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission-matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that this improved performance could be due to the hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multimode fibers generalize better to previously unseen data, positioning them as promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
GL发布了新的文献求助10
1秒前
djiwisksk66应助aojoo采纳,获得10
1秒前
Saw完成签到,获得积分10
2秒前
烟花应助Laneyliu采纳,获得50
3秒前
Ache完成签到,获得积分10
3秒前
3秒前
wy.he应助大气元彤采纳,获得20
4秒前
4秒前
英俊的铭应助Bran采纳,获得10
4秒前
5秒前
小蘑菇应助highrain采纳,获得10
6秒前
6秒前
顾矜应助小董采纳,获得10
6秒前
6秒前
随风完成签到 ,获得积分10
6秒前
丢硬币的小孩完成签到,获得积分10
6秒前
牛太虚完成签到,获得积分10
7秒前
niuuuuu完成签到,获得积分10
7秒前
任燕杰完成签到,获得积分10
8秒前
8秒前
wanshui发布了新的文献求助10
8秒前
开心最重要完成签到,获得积分10
8秒前
魔幻乐安完成签到,获得积分10
8秒前
8秒前
啊哦呃噫呜吁完成签到,获得积分10
8秒前
9秒前
LastwhispersLee完成签到,获得积分10
9秒前
土豆金发布了新的文献求助10
9秒前
蓝色斑马完成签到,获得积分10
9秒前
9秒前
张彩红发布了新的文献求助10
9秒前
10秒前
glory_c完成签到,获得积分20
10秒前
11秒前
望乐思完成签到,获得积分10
11秒前
张海桐发布了新的文献求助10
11秒前
pomelo完成签到 ,获得积分10
12秒前
在望发布了新的文献求助10
12秒前
CodeCraft应助孟双采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970802
求助须知:如何正确求助?哪些是违规求助? 3515474
关于积分的说明 11178714
捐赠科研通 3250627
什么是DOI,文献DOI怎么找? 1795390
邀请新用户注册赠送积分活动 875818
科研通“疑难数据库(出版商)”最低求助积分说明 805183