Low-power multimode-fiber projector outperforms shallow-neural-network classifiers

多模光纤 投影机 功率(物理) 纤维 计算机科学 人工神经网络 人工智能 物理 光纤 材料科学 电信 量子力学 复合材料
作者
Daniele Ancora,Matteo Negri,Antonio Gianfrate,D. Trypogeorgos,Lorenzo Dominici,D. Sanvitto,Federico Ricci‐Tersenghi,Luca Leuzzi
出处
期刊:Physical review applied [American Physical Society]
卷期号:21 (6)
标识
DOI:10.1103/physrevapplied.21.064027
摘要

In the domain of disordered photonics, the characterization of optically opaque materials for light manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data for classification by training a single logistic regression layer improves accuracy compared to training on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that obtained with the standard transmission-matrix model, a widely accepted tool for describing light transmission through disordered devices. We conjecture that this improved performance could be due to the hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which aligns with the current theory of deep neural networks. These findings suggest that the class of random projections operated by multimode fibers generalize better to previously unseen data, positioning them as promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing the knowledge and practical utilization of these versatile instruments, which may play a significant role in shaping the future of neuromorphic machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气yumin发布了新的文献求助10
刚刚
kyle发布了新的文献求助10
刚刚
Snoopy发布了新的文献求助10
1秒前
sg123_发布了新的文献求助10
2秒前
NexusExplorer应助小高采纳,获得10
2秒前
无花果应助QQ采纳,获得10
2秒前
jiyuan发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
Mobitz发布了新的文献求助20
3秒前
3秒前
3秒前
不想做实验完成签到,获得积分10
4秒前
群山完成签到 ,获得积分10
4秒前
4秒前
wanci应助苏silence采纳,获得10
4秒前
红桃K完成签到,获得积分10
5秒前
Stella应助炙热的天菱采纳,获得20
5秒前
黑白菜完成签到,获得积分10
5秒前
小谭完成签到 ,获得积分10
6秒前
dew应助柠檬普洱茶采纳,获得50
6秒前
Amdies完成签到,获得积分10
6秒前
dew应助朵朵采纳,获得10
7秒前
xxy完成签到,获得积分10
7秒前
guoguo发布了新的文献求助10
7秒前
7秒前
肉鸡应助Sea_U采纳,获得50
7秒前
阿庆完成签到,获得积分10
8秒前
一只肥牛完成签到,获得积分10
8秒前
8秒前
8秒前
vvvvv发布了新的文献求助10
9秒前
吴龙完成签到,获得积分10
9秒前
9秒前
10秒前
倦鸟余花完成签到,获得积分10
10秒前
10秒前
茫123456完成签到,获得积分10
12秒前
12秒前
winner发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034